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Introduction Clocks Synchronization Performance System Précis

WE NEED CLOCKS

THE OBVIOUS

• Clocks used everywhere in networking and computing
• Network measurement (active and passive)
• Real-time services

THE FUTURE

• Tighter server integration
• Coordination of simultaneous multiple connections
• Latency a fundamental constraint in distributed services/computing

Example: Virtual world realism in distributed games
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AND WANT GOOD CLOCKS

RELIABILITY/ROBUSTNESS

• Can’t build tight systems unless have bounds
• Status quo (ntpd) can be ‘good’ (1ms), bad (20ms), outrageous (100’s ms)
• Measurement community pushed to GPS synchronized capture cards

ACCURACY

• Greater accuracy → wider range of applications
• Status quo (ntpd) limited to 1ms, if all is well..
• Constant error versus ‘jitter’, absolute time versus time differences

AFFORDABILITY

• Use existing hardware (oscillator(s) in PCs)
• Network based synchronization cheap and convenient
• But GPS also cheap, right?

Can cost 12 months and $10,000 to instrument a machine room
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THE TSCCLOCK

DESIGN

• Re-engineered from scratch
• Built on

• time-scale aware abstraction of oscillator performance
• separate and decoupled treatment of rate and absolute time
• RTT based delay filtering
• feedforward not feedback

• Use oscillator driving CPU, accessible via TSC register
(commonly available, high resolution, hardware updating, fast read)

PROVIDES

• Very high robustness
• Accuracy an order of magnitude higher than ntpd (or more)
• Separate Absolute and Difference clocks
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OFFSET, SKEW AND DRIFT

Constant 
Skew Clock

Constant 
Offset Clock

Drifting Clock

Clock 
Time

True Timetk

Cs(tk)

Cp(tk)

Co(tk)

Cd(tk)

Offset: error θ(t) = C(t)− t of clock C(t) at time t
Skew: error in rate. E.g.: θ(t) = C + γt (Simple Skew Model (SKM))
Drift: non-linear evolution of θ(t)
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THE ROLE OF TIME SCALE

Laboratory: p̄ = 1.82263812 ∗ 10−9 (548.65527 Mhz)
Machine Room: p̄ = 1.82263832 ∗ 10−9 (548.65521 Mhz)
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Short timescales: Simple Skew Model applies
Large timescales: unpredictable drift must be tracked
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OSCILLATOR STABILITY

Allan deviation: scale dependent rate errors: yτ (t) =
θ(t + τ)− θ(t)
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• SKM holds for τ∗ = 1000 [sec], (here TSC period p meaningful)
• Average rate error upper bounded by 0.1 PPM no matter the scale
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THE NEED FOR DIFFERENCE CLOCKS

Stable rate ( p good to 10−7) implies accurate ∆(t) measurement:
Example: error in RTT of 100ms just 10ns

However an absolute clock Ca(t) requires constant correction to negate drift:
• To synchronize Ca(t), could

• continuously modulate rate (ntpd uses ±500 PPM band)
• regularly add corrective jumps

• Either way, rate is disturbed
• Effect large! since drift estimation inherently difficult

Result: high native stability degraded by unbounded amount!
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A DUAL CLOCK ARCHITECTURE

Foundation is the uncorrected clock: Cu(t) = p̄ · TSC(t) + K

DIFFERENCE CLOCK

• Used for time differences below τ∗ ∼ 1000 sec
• Cd(t) = Cu(t) Example: Cd(t2)− Cd(t1) = p̄ · (TSC(t2)− TSC(t1))
• Immune from errors in drift correction
• Use: RTTs, delay jitter, execution time, local event ordering ..

ABSOLUTE CLOCK

• Absolute timestamps (and time differences above τ∗)
• Ca(t) = Cu(t)− θ̂(t)

• Drift correction estimate θ̂(t) only applied when clock read
• Use: latency, global event ordering and scheduling ..

Require robust, accurate algorithms for p̄ and θ̂
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A CLIENT-SERVER PARADIGM

Time Server
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DAG
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Obtain timestamps {Ta,i, Tb,i, Te,i, Tf,i} from i-th exchange

{Ta,i, Tf,i}: host timestamps in TSC counter units
{Tb,i, Te,i}: server timestamps in seconds
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FILTERING NETWORK DELAYS

Choose RTT based filtering, not one-way (using same clock good!)

Round–Trip Times ri of packet i
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Model for RTT: ri = r + positive random noise
Filter using point error: excess over minimum RTT
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NAIVE RATE SYNCHRONIZATION

Wish to exploit the relation ∆(t) = ∆(TSC) ∗ p̄

Naive estimate based on widely separated packets jand i:

p̂↑i,j ≡
Tb,i − Tb,j

Ta,i − Ta,j
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Network delay and timestamping noise ∼ 1
∆(TSC) , but errors not bounded.
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RATE SYNCHRONIZATION ALGORITHM

Use selected naive estimates based on point error threshold
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PROPERTIES

• Error quickly < 0.1 PPM, In 10mins, better than GPS!
• Error reduction (in timestamping, latency) guaranteed by ∆(t)
• Inherently robust to packet loss, congestion, loss of server..
• Based on p̄, no local rate estimates
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NAIVE ABSOLUTE SYNCHRONIZATION

Wish to exploit SKM over small scales to measure θ(t)

Naive estimate again ignores network congestion, exploits steady rate over RTT

θ̂i =
1
2
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1
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ABSOLUTE SYNCHRONIZATION ALGORITHM

Must track, so use all naive estimates, but carefully

ALGORITHM FOR θ̂(t)
• Weighted estimate of naive θi’s over SKM window
• Weights very strict, based on RTT quality (if quality very bad, freeze)
• Meaningful sanity check: ignore if hardware rate bound exceeded
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THE PATH ASYMMETRY

FUNDAMENTAL AMBIGUITY

Asymmetry A ≡ d↑ − d↓ and 2θ(t) non-unique up to a constant.

IMPACT ON ABSOLUTE CLOCK

• A unknown: generally forced to assume A = 0
• However, bounded by minimum RTT: A ∈ (− r, r)
• Create constant errors from 5µs to 100’s ms
• Causes jumps when server changed
• → Important to use a single, close, server.

IMPACT ON DIFFERENCE CLOCK

• None
• Difference clock can be used to measure r
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TESTBED

Unix PC

NTP Server
Stratum 1

GPS 
Receiver

Hub

Host DAG
Card

PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request

UDP Sender 
& Receiver

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

• GPS synchronized DAG card for external validation
• GPS synchronized SW and modified kernels for internal validation

• side by side timestamps cancels noise, but
• only relative performance measurable, not absolute
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• timestamps accurate to 100ns, but
• comparison polluted by ‘system noise’
• splits asymmetry: A = An + Ah

• allows network component An to be measured
• host component Ah can only be bounded, can be >200µs!
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A QUICK COMPARISON WITH ntpd
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ntpd: sync’d to stratum-1 NTP server on LAN (broadcast mode)
TSCclock: sync’d to stratum-1 NTP server outside LAN
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EXTERNAL VALIDATION: TSCCLOCK VS DAG
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INTERNAL VALIDATION: TSCCLOCK VS SW-GPS
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PARAMETER DEPENDENCE

window width
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Duration: 32 days
Server: Stratum-1 NTP, 5 hops away, r = 0.61 ms
Poll Period: 16 sec
Asymmetry: An = 70 µs
Median IQR: 12µs (corrected for A)
IQR: 15µs (including external validation noise)
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COMPARISON WITH nptd

Server on LAN
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Asymmetry: Same for each clock
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DIFFERENCE CLOCK VERSUS GPS
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DIFFERENCE CLOCK VERSUS GPS
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THE SYSTEM

• API
• absolute and difference clock reading
• mode setting/reading
• diagnostics

• Timestamping solution
• better with kernel support

• Synchronization algorithm:
• runs as daemon or on command line
• can store and replay log files

• Server
• no server side solution, yet
• client compatible with existing NTP servers
• designed (and recommended) for use with a single server
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TIMESTAMPING

KERNEL

• Packet timestamping:
• Normal mode: TSCclock works in parallel with SW
• TSCclock mode: SW also returns Ca(t) transparently

• Other timestamping:
• TSCclock works in parallel with SW

USER

• Packet timestamping:
• Kernel packet timestamps inferred from userland
• TSCclock works in parallel with SW
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PACKAGING

• Ubuntu 6.10 (Edgy)
• Ubuntu 7.04 (Feisty)
• Debian 4.0 (Etch)
• Fedora Core 6
• and soon Fedora Core 7 ...
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CONCLUSIONS

• TSCclock: for synchronization over networks
• Currently based on CPU oscillator accessible via TSC register
• Absolute Clock:

• far more robust than ntpd
• order of magnitude more accurate

• Difference Clock:
• exceptionally robust
• not available under ntpd
• more accurate than standard GPS solution for small time intervals

• Kernel and userland packet timestamping solutions
• Low computational requirements
• Runs as daemon in parallel with ntpd
• Works with existing NTP server network
• Packages written for BSD and popular Linux distributions
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LINKS

• Publications:
http://www.cubinlab.ee.unimelb.edu.au/articles

• TSCclock page:
http://www.cubinlab.ee.unimelb.edu.au/tscclock
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