
Introduction Clocks Synchronization Performance System Précis

TSCCLOCK: A LOW COST, ROBUST, ACCURATE
SOFTWARE CLOCK FOR NETWORKED COMPUTERS

Darryl Veitch
d.veitch@ee.unimelb.edu.au

http://www.cubinlab.ee.unimelb.edu.au/∼darryl
Collaboration with Julien Ridoux

CUBIN, Department of Electrical & Electronic Engineering
The University of Melbourne

Google Tech Talk, Googleplex CA, July 23, 2007

1 / 52

Introduction Clocks Synchronization Performance System Précis

WE NEED CLOCKS

THE OBVIOUS

• Clocks used everywhere in networking and computing
• Network measurement (active and passive)
• Real-time services

THE FUTURE

• Tighter server integration
• Coordination of simultaneous multiple connections
• Latency a fundamental constraint in distributed services/computing

Example: Virtual world realism in distributed games

2 / 52

Introduction Clocks Synchronization Performance System Précis

WE NEED CLOCKS

THE OBVIOUS

• Clocks used everywhere in networking and computing
• Network measurement (active and passive)
• Real-time services

THE FUTURE

• Tighter server integration
• Coordination of simultaneous multiple connections
• Latency a fundamental constraint in distributed services/computing

Example: Virtual world realism in distributed games

3 / 52

Introduction Clocks Synchronization Performance System Précis

AND WANT GOOD CLOCKS

RELIABILITY/ROBUSTNESS

• Can’t build tight systems unless have bounds
• Status quo (ntpd) can be ‘good’ (1ms), bad (20ms), outrageous (100’s ms)
• Measurement community pushed to GPS synchronized capture cards

ACCURACY

• Greater accuracy → wider range of applications
• Status quo (ntpd) limited to 1ms, if all is well..
• Constant error versus ‘jitter’, absolute time versus time differences

AFFORDABILITY

• Use existing hardware (oscillator(s) in PCs)
• Network based synchronization cheap and convenient
• But GPS also cheap, right?

Can cost 12 months and $10,000 to instrument a machine room

4 / 52

Introduction Clocks Synchronization Performance System Précis

AND WANT GOOD CLOCKS

RELIABILITY/ROBUSTNESS

• Can’t build tight systems unless have bounds
• Status quo (ntpd) can be ‘good’ (1ms), bad (20ms), outrageous (100’s ms)
• Measurement community pushed to GPS synchronized capture cards

ACCURACY

• Greater accuracy → wider range of applications
• Status quo (ntpd) limited to 1ms, if all is well..
• Constant error versus ‘jitter’, absolute time versus time differences

AFFORDABILITY

• Use existing hardware (oscillator(s) in PCs)
• Network based synchronization cheap and convenient
• But GPS also cheap, right?

Can cost 12 months and $10,000 to instrument a machine room

5 / 52

Introduction Clocks Synchronization Performance System Précis

AND WANT GOOD CLOCKS

RELIABILITY/ROBUSTNESS

• Can’t build tight systems unless have bounds
• Status quo (ntpd) can be ‘good’ (1ms), bad (20ms), outrageous (100’s ms)
• Measurement community pushed to GPS synchronized capture cards

ACCURACY

• Greater accuracy → wider range of applications
• Status quo (ntpd) limited to 1ms, if all is well..
• Constant error versus ‘jitter’, absolute time versus time differences

AFFORDABILITY

• Use existing hardware (oscillator(s) in PCs)
• Network based synchronization cheap and convenient
• But GPS also cheap, right?

Can cost 12 months and $10,000 to instrument a machine room

6 / 52

Introduction Clocks Synchronization Performance System Précis

AND WANT GOOD CLOCKS

RELIABILITY/ROBUSTNESS

• Can’t build tight systems unless have bounds
• Status quo (ntpd) can be ‘good’ (1ms), bad (20ms), outrageous (100’s ms)
• Measurement community pushed to GPS synchronized capture cards

ACCURACY

• Greater accuracy → wider range of applications
• Status quo (ntpd) limited to 1ms, if all is well..
• Constant error versus ‘jitter’, absolute time versus time differences

AFFORDABILITY

• Use existing hardware (oscillator(s) in PCs)
• Network based synchronization cheap and convenient
• But GPS also cheap, WRONG!

Can cost 12 months and $10,000 to instrument a machine room

7 / 52

Introduction Clocks Synchronization Performance System Précis

THE TSCCLOCK

DESIGN

• Re-engineered from scratch
• Built on

• time-scale aware abstraction of oscillator performance
• separate and decoupled treatment of rate and absolute time
• RTT based delay filtering
• feedforward not feedback

• Use oscillator driving CPU, accessible via TSC register
(commonly available, high resolution, hardware updating, fast read)

PROVIDES

• Very high robustness
• Accuracy an order of magnitude higher than ntpd (or more)
• Separate Absolute and Difference clocks

8 / 52

Introduction Clocks Synchronization Performance System Précis

THE TSCCLOCK

DESIGN

• Re-engineered from scratch
• Built on

• time-scale aware abstraction of oscillator performance
• separate and decoupled treatment of rate and absolute time
• RTT based delay filtering
• feedforward not feedback

• Use oscillator driving CPU, accessible via TSC register
(commonly available, high resolution, hardware updating, fast read)

PROVIDES

• Very high robustness
• Accuracy an order of magnitude higher than ntpd (or more)
• Separate Absolute and Difference clocks

9 / 52

Introduction Clocks Synchronization Performance System Précis

THE TSCCLOCK

DESIGN

• Re-engineered from scratch NOT just the fact that TSC is used!
• Built on

• time-scale aware abstraction of oscillator performance
• separate and decoupled treatment of rate and absolute time
• RTT based delay filtering
• feedforward not feedback

• Use oscillator driving CPU, accessible via TSC register
(commonly available, high resolution, hardware updating, fast read)

PROVIDES

• Very high robustness
• Accuracy an order of magnitude higher than ntpd (or more)
• Separate Absolute and Difference clocks

10 / 52

Introduction Clocks Synchronization Performance System Précis

THE TSCCLOCK

DESIGN

• Re-engineered from scratch NOT just the fact that TSC is used!
• Built on

• time-scale aware abstraction of oscillator performance
• separate and decoupled treatment of rate and absolute time
• RTT based delay filtering
• feedforward not feedback

• Use oscillator driving CPU, accessible via TSC register
(commonly available, high resolution, hardware updating, fast read)

PROVIDES

• Very high robustness
• Accuracy an order of magnitude higher than ntpd (or more)
• Separate Absolute and Difference clocks

11 / 52

Introduction Clocks Synchronization Performance System Précis

OFFSET, SKEW AND DRIFT

Constant
Skew Clock

Constant
Offset Clock

Drifting Clock

Clock
Time

True Timetk

Cs(tk)

Cp(tk)

Co(tk)

Cd(tk)

Offset: error θ(t) = C(t)− t of clock C(t) at time t
Skew: error in rate. E.g.: θ(t) = C + γt (Simple Skew Model (SKM))
Drift: non-linear evolution of θ(t)

12 / 52

Introduction Clocks Synchronization Performance System Précis

OFFSET, SKEW AND DRIFT

Constant
Skew Clock

Constant
Offset Clock

Drifting Clock

Clock
Time

True Timetk

Cs(tk)

Cp(tk)

Co(tk)

Cd(tk)

Offset: error θ(t) = C(t)− t of clock C(t) at time t
Skew: error in rate. E.g.: θ(t) = C + γt (Simple Skew Model (SKM))
Drift: non-linear evolution of θ(t)

13 / 52

Introduction Clocks Synchronization Performance System Précis

THE ROLE OF TIME SCALE

Laboratory: p̄ = 1.82263812 ∗ 10−9 (548.65527 Mhz)
Machine Room: p̄ = 1.82263832 ∗ 10−9 (548.65521 Mhz)

0 2 4 6
−10

−5

0

5

10

time [day]
O

ffs
et

 e
rr

or
 [m

s]
0 200 400 600 800 1000

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time [sec]

O
ffs

et
 e

rr
or

 [m
s]

laboratory
machine−room
0.1 PPM

Short timescales: Simple Skew Model applies
Large timescales: unpredictable drift must be tracked

14 / 52

Introduction Clocks Synchronization Performance System Précis

THE ROLE OF TIME SCALE

Laboratory: p̄ = 1.82263812 ∗ 10−9 (548.65527 Mhz)
Machine Room: p̄ = 1.82263832 ∗ 10−9 (548.65521 Mhz)

0 2 4 6
−10

−5

0

5

10

time [day]
O

ffs
et

 e
rr

or
 [m

s]
0 200 400 600 800 1000

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time [sec]

O
ffs

et
 e

rr
or

 [m
s]

laboratory
machine−room
0.1 PPM

Short timescales: Simple Skew Model applies
Large timescales: unpredictable drift must be tracked

15 / 52

Introduction Clocks Synchronization Performance System Précis

OSCILLATOR STABILITY

Allan deviation: scale dependent rate errors: yτ (t) =
θ(t + τ)− θ(t)

τ

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

τ [sec]

A
lla

n
de

vi
at

io
n

of
 y

τ

Laboratory ServerInt
Machine−room ServerExt
0.1 PPM

• SKM holds for τ∗ = 1000 [sec], (here TSC period p meaningful)
• Average rate error upper bounded by 0.1 PPM no matter the scale

16 / 52

Introduction Clocks Synchronization Performance System Précis

OSCILLATOR STABILITY

Allan deviation: scale dependent rate errors: yτ (t) =
θ(t + τ)− θ(t)

τ

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

τ [sec]

A
lla

n
de

vi
at

io
n

of
 y

τ

Laboratory ServerInt
Machine−room ServerExt
0.1 PPM

• SKM holds for τ∗ = 1000 [sec], (here TSC period p meaningful)
• Average rate error upper bounded by 0.1 PPM no matter the scale

17 / 52

Introduction Clocks Synchronization Performance System Précis

THE NEED FOR DIFFERENCE CLOCKS

Stable rate (p good to 10−7) implies accurate ∆(t) measurement:
Example: error in RTT of 100ms just 10ns

However an absolute clock Ca(t) requires constant correction to negate drift:
• To synchronize Ca(t), could

• continuously modulate rate (ntpd uses ±500 PPM band)
• regularly add corrective jumps

• Either way, rate is disturbed
• Effect large! since drift estimation inherently difficult

Result: high native stability degraded by unbounded amount!

18 / 52

Introduction Clocks Synchronization Performance System Précis

THE NEED FOR DIFFERENCE CLOCKS

Stable rate (p good to 10−7) implies accurate ∆(t) measurement:
Example: error in RTT of 100ms just 10ns

However an absolute clock Ca(t) requires constant correction to negate drift:
• To synchronize Ca(t), could

• continuously modulate rate (ntpd uses ±500 PPM band)
• regularly add corrective jumps

• Either way, rate is disturbed
• Effect large! since drift estimation inherently difficult

Result: high native stability degraded by unbounded amount!

19 / 52

Introduction Clocks Synchronization Performance System Précis

THE NEED FOR DIFFERENCE CLOCKS

Stable rate (p good to 10−7) implies accurate ∆(t) measurement:
Example: error in RTT of 100ms just 10ns

However an absolute clock Ca(t) requires constant correction to negate drift:
• To synchronize Ca(t), could

• continuously modulate rate (ntpd uses ±500 PPM band)
• regularly add corrective jumps

• Either way, rate is disturbed
• Effect large! since drift estimation inherently difficult

Result: high native stability degraded by unbounded amount!

20 / 52

Introduction Clocks Synchronization Performance System Précis

A DUAL CLOCK ARCHITECTURE

Foundation is the uncorrected clock: Cu(t) = p̄ · TSC(t) + K

DIFFERENCE CLOCK

• Used for time differences below τ∗ ∼ 1000 sec
• Cd(t) = Cu(t) Example: Cd(t2)− Cd(t1) = p̄ · (TSC(t2)− TSC(t1))
• Immune from errors in drift correction
• Use: RTTs, delay jitter, execution time, local event ordering ..

ABSOLUTE CLOCK

• Absolute timestamps (and time differences above τ∗)
• Ca(t) = Cu(t)− θ̂(t)

• Drift correction estimate θ̂(t) only applied when clock read
• Use: latency, global event ordering and scheduling ..

Require robust, accurate algorithms for p̄ and θ̂
21 / 52

Introduction Clocks Synchronization Performance System Précis

A DUAL CLOCK ARCHITECTURE

Foundation is the uncorrected clock: Cu(t) = p̄ · TSC(t) + K

DIFFERENCE CLOCK

• Used for time differences below τ∗ ∼ 1000 sec
• Cd(t) = Cu(t) Example: Cd(t2)− Cd(t1) = p̄ · (TSC(t2)− TSC(t1))
• Immune from errors in drift correction
• Use: RTTs, delay jitter, execution time, local event ordering ..

ABSOLUTE CLOCK

• Absolute timestamps (and time differences above τ∗)
• Ca(t) = Cu(t)− θ̂(t)

• Drift correction estimate θ̂(t) only applied when clock read
• Use: latency, global event ordering and scheduling ..

Require robust, accurate algorithms for p̄ and θ̂
22 / 52

Introduction Clocks Synchronization Performance System Précis

A DUAL CLOCK ARCHITECTURE

Foundation is the uncorrected clock: Cu(t) = p̄ · TSC(t) + K

DIFFERENCE CLOCK

• Used for time differences below τ∗ ∼ 1000 sec
• Cd(t) = Cu(t) Example: Cd(t2)− Cd(t1) = p̄ · (TSC(t2)− TSC(t1))
• Immune from errors in drift correction
• Use: RTTs, delay jitter, execution time, local event ordering ..

ABSOLUTE CLOCK

• Absolute timestamps (and time differences above τ∗)
• Ca(t) = Cu(t)− θ̂(t)

• Drift correction estimate θ̂(t) only applied when clock read
• Use: latency, global event ordering and scheduling ..

Require robust, accurate algorithms for p̄ and θ̂
23 / 52

Introduction Clocks Synchronization Performance System Précis

A DUAL CLOCK ARCHITECTURE

Foundation is the uncorrected clock: Cu(t) = p̄ · TSC(t) + K

DIFFERENCE CLOCK

• Used for time differences below τ∗ ∼ 1000 sec
• Cd(t) = Cu(t) Example: Cd(t2)− Cd(t1) = p̄ · (TSC(t2)− TSC(t1))
• Immune from errors in drift correction
• Use: RTTs, delay jitter, execution time, local event ordering ..

ABSOLUTE CLOCK

• Absolute timestamps (and time differences above τ∗)
• Ca(t) = Cu(t)− θ̂(t)

• Drift correction estimate θ̂(t) only applied when clock read
• Use: latency, global event ordering and scheduling ..

Require robust, accurate algorithms for p̄ and θ̂
24 / 52

Introduction Clocks Synchronization Performance System Précis

A CLIENT-SERVER PARADIGM

Time Server

Host

DAG

t
g
a,i

r
g
i

d
h↑
i

time

d
→

id
↑
i

d
↓
i

ri

ta,i tb,i te,i tf,it
g
f,i

d
h↓
i

Obtain timestamps {Ta,i, Tb,i, Te,i, Tf,i} from i-th exchange

{Ta,i, Tf,i}: host timestamps in TSC counter units
{Tb,i, Te,i}: server timestamps in seconds

25 / 52

Introduction Clocks Synchronization Performance System Précis

FILTERING NETWORK DELAYS

Choose RTT based filtering, not one-way (using same clock good!)

Round–Trip Times ri of packet i

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

T
e
 [sec]

de
la

y
[m

s]

Model for RTT: ri = r + positive random noise
Filter using point error: excess over minimum RTT

26 / 52

Introduction Clocks Synchronization Performance System Précis

NAIVE RATE SYNCHRONIZATION

Wish to exploit the relation ∆(t) = ∆(TSC) ∗ p̄

Naive estimate based on widely separated packets jand i:

p̂↑i,j ≡
Tb,i − Tb,j

Ta,i − Ta,j

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

T
e
 [day]

[P
P

M
]

backward p estimate
reference

Network delay and timestamping noise ∼ 1
∆(TSC) , but errors not bounded.

27 / 52

Introduction Clocks Synchronization Performance System Précis

RATE SYNCHRONIZATION ALGORITHM

Use selected naive estimates based on point error threshold

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

T
e
 [day]

 r
el

 e
rr

or

E* = 0.3ms
err bound
E* = 0.075ms
err bound
0.1 PPM

PROPERTIES

• Error quickly < 0.1 PPM, In 10mins, better than GPS!
• Error reduction (in timestamping, latency) guaranteed by ∆(t)
• Inherently robust to packet loss, congestion, loss of server..
• Based on p̄, no local rate estimates

28 / 52

Introduction Clocks Synchronization Performance System Précis

RATE SYNCHRONIZATION ALGORITHM

Use selected naive estimates based on point error threshold

10
−3

10
−2

10
−1

10
0

10
−10

10
−5

T
e
 [day]

 r
el

 e
rr

or

E* = 0.3ms
err bound
E* = 0.075ms
err bound
0.1 PPM

PROPERTIES

• Error quickly < 0.1 PPM, In 10mins, better than GPS!
• Error reduction (in timestamping, latency) guaranteed by ∆(t)
• Inherently robust to packet loss, congestion, loss of server..
• Based on p̄, no local rate estimates

29 / 52

Introduction Clocks Synchronization Performance System Précis

NAIVE ABSOLUTE SYNCHRONIZATION

Wish to exploit SKM over small scales to measure θ(t)

Naive estimate again ignores network congestion, exploits steady rate over RTT

θ̂i =
1
2
(C(ta,i) + C(tf,i))−

1
2
(Tb,i + Te,i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

Te [day]

O
ffs

et
 e

st
im

at
es

 [m
s]

naive
reference

30 / 52

Introduction Clocks Synchronization Performance System Précis

ABSOLUTE SYNCHRONIZATION ALGORITHM

Must track, so use all naive estimates, but carefully

ALGORITHM FOR θ̂(t)
• Weighted estimate of naive θi’s over SKM window
• Weights very strict, based on RTT quality (if quality very bad, freeze)
• Meaningful sanity check: ignore if hardware rate bound exceeded

4 4.5 5 5.5

7.9

8

8.1

8.2

Tb [day]

O
ffs

et
 e

st
im

at
es

 [m
s]

naive
reference
algorithm

31 / 52

Introduction Clocks Synchronization Performance System Précis

THE PATH ASYMMETRY

FUNDAMENTAL AMBIGUITY

Asymmetry A ≡ d↑ − d↓ and 2θ(t) non-unique up to a constant.

IMPACT ON ABSOLUTE CLOCK

• A unknown: generally forced to assume A = 0
• However, bounded by minimum RTT: A ∈ (− r, r)
• Create constant errors from 5µs to 100’s ms
• Causes jumps when server changed
• → Important to use a single, close, server.

IMPACT ON DIFFERENCE CLOCK

• None
• Difference clock can be used to measure r

32 / 52

Introduction Clocks Synchronization Performance System Précis

TESTBED

Unix PC

NTP Server
Stratum 1

GPS
Receiver

Hub

Host DAG
Card

PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request

UDP Sender
& Receiver

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

• GPS synchronized DAG card for external validation
• GPS synchronized SW and modified kernels for internal validation

• side by side timestamps cancels noise, but
• only relative performance measurable, not absolute

33 / 52

Introduction Clocks Synchronization Performance System Précis

TESTBED

Unix PC

NTP Server
Stratum 1

GPS
Receiver

Hub

Host DAG
Card

PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request

UDP Sender
& Receiver

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

• GPS synchronized DAG card for external validation
• timestamps accurate to 100ns, but
• comparison polluted by ‘system noise’
• splits asymmetry: A = An + Ah

• allows network component An to be measured
• host component Ah can only be bounded, can be >200µs!

• GPS synchronized SW and modified kernels for internal validation

• side by side timestamps cancels noise, but
• only relative performance measurable, not absolute

34 / 52

Introduction Clocks Synchronization Performance System Précis

TESTBED

Unix PC

NTP Server
Stratum 1

GPS
Receiver

Hub

Host DAG
Card

PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request

UDP Sender
& Receiver

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

• GPS synchronized DAG card for external validation
• GPS synchronized SW and modified kernels for internal validation

• side by side timestamps cancels noise, but
• only relative performance measurable, not absolute

35 / 52

Introduction Clocks Synchronization Performance System Précis

A QUICK COMPARISON WITH ntpd

0 2 4 6 8 10 12

−1

−0.5

0

0.5

1

Days

[m
s]

TSCclock
SW−NTP

ntpd: sync’d to stratum-1 NTP server on LAN (broadcast mode)
TSCclock: sync’d to stratum-1 NTP server outside LAN

36 / 52

Introduction Clocks Synchronization Performance System Précis

EXTERNAL VALIDATION: TSCCLOCK VS DAG

0 12 24 36 48 60 72 84
−15

0

15

45

Hours

[m
us

]

TSC
err

Server: Stratum-1 NTP on LAN
Polling Period: 256 sec
System Noise: ∼ 20µs
Asymmetry: Measured at 36µs

and removed

5 10 15 20 25 30
0

0.005

0.01

0.015

[mus]

TSC
err Median 16.7

IQR 7.8

37 / 52

Introduction Clocks Synchronization Performance System Précis

INTERNAL VALIDATION: TSCCLOCK VS SW-GPS

0 3 6 9 12 15 18 21 24 27 30 33
−40

−10

0

10

40

Hours

[m
us

]

Cdiff

Server: Stratum-1 outside LAN
Polling Period: 16 sec
System Noise: � 1µs
Asymmetry: As before for TSCclock,

but SW-GPS component?

−20 −10 0 10 20
0

2

4

6

8

x 10
−3

[mus]

Cdiff Median −1.4
IQR 18.2

38 / 52

Introduction Clocks Synchronization Performance System Précis

PARAMETER DEPENDENCE

window width

0.0625 0.125 0.25 0.5 1 2 4
−50

0

50

100

150

200 (a)

τ’/τ*

O
ffs

et
 E

rr
or

 [µ
s]

no local rate
with local rate

polling period

16 32 64 128 256 512
−50

0

50

100

150

200 (b)

Polling Period [s]

no local rate
with local rate

Duration: 32 days
Server: Stratum-1 NTP, 5 hops away, r = 0.61 ms
Poll Period: 16 sec
Asymmetry: An = 70 µs
Median IQR: 12µs (corrected for A)
IQR: 15µs (including external validation noise)

39 / 52

Introduction Clocks Synchronization Performance System Précis

COMPARISON WITH nptd

Server on LAN

16 64 256 16 64 256
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

ServerNear

Polling Period [sec]

[m
s]

Server outside LAN

16 64 256 16 64 256

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

ServerLoc

Polling Period [sec]
[m

s]

Asymmetry: Same for each clock

40 / 52

Introduction Clocks Synchronization Performance System Précis

DIFFERENCE CLOCK VERSUS GPS

0 5 10 15 20 25 0 5 10 15 20

−10mus

−5mus

−1mus
 0

 1mus

 5mus

 10mus

Days

Live C
d
(t)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

x 10
−3
Live C

d
(t): med = 0.03 iqr = 0.71 [mus]

[mus]

41 / 52

Introduction Clocks Synchronization Performance System Précis

DIFFERENCE CLOCK VERSUS GPS

0 5 10 15 20 25 0 5 10 15 20

−10mus

−5mus

−1mus
 0

 1mus

 5mus

 10mus

Days

Live C
d
(t)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

x 10
−3
Live C

d
(t): med = 0.03 iqr = 0.71 [mus]

[mus]

Now compare if no connectivity with server

42 / 52

Introduction Clocks Synchronization Performance System Précis

DIFFERENCE CLOCK VERSUS GPS

0 5 10 15 20 25 0 5 10 15 20

−10mus

−5mus

−1mus
 0

 1mus

 5mus

 10mus

Days

Live C
d
(t)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

x 10
−3
Live C

d
(t): med = 0.03 iqr = 0.71 [mus]

[mus]

0 5 10 15 20 25 0 5 10 15 20

−10mus

−5mus

−1mus
 0

 1mus

 5mus

 10mus

Days

Frozen C
d
(t)

−1 −0.5 0 0.5 1
0

0.5

1

1.5

x 10
−3

Frozen C
d
(t): med = 0.19 iqr = 0.741 [mus]

[mus]

43 / 52

Introduction Clocks Synchronization Performance System Précis

THE SYSTEM

• API
• absolute and difference clock reading
• mode setting/reading
• diagnostics

• Timestamping solution
• better with kernel support

• Synchronization algorithm:
• runs as daemon or on command line
• can store and replay log files

• Server
• no server side solution, yet
• client compatible with existing NTP servers
• designed (and recommended) for use with a single server

44 / 52

Introduction Clocks Synchronization Performance System Précis

TIMESTAMPING

KERNEL

• Packet timestamping:
• Normal mode: TSCclock works in parallel with SW
• TSCclock mode: SW also returns Ca(t) transparently

• Other timestamping:
• TSCclock works in parallel with SW

USER

• Packet timestamping:
• Kernel packet timestamps inferred from userland
• TSCclock works in parallel with SW

45 / 52

Introduction Clocks Synchronization Performance System Précis

TIMESTAMPING

KERNEL

• Packet timestamping:
• Normal mode: TSCclock works in parallel with SW
• TSCclock mode: SW also returns Ca(t) transparently

• Other timestamping:
• TSCclock works in parallel with SW

USER

• Packet timestamping:
• Kernel packet timestamps inferred from userland
• TSCclock works in parallel with SW

46 / 52

Introduction Clocks Synchronization Performance System Précis

TIMESTAMPING

KERNEL

• Packet timestamping:
• Normal mode: TSCclock works in parallel with SW
• TSCclock mode: SW also returns Ca(t) transparently

• Other timestamping:
• TSCclock works in parallel with SW

USER

• Packet timestamping:
• Kernel packet timestamps inferred from userland
• TSCclock works in parallel with SW

47 / 52

Introduction Clocks Synchronization Performance System Précis

PACKAGING

• Ubuntu 6.10 (Edgy)
• Ubuntu 7.04 (Feisty)
• Debian 4.0 (Etch)
• Fedora Core 6
• and soon Fedora Core 7 ...

48 / 52

Introduction Clocks Synchronization Performance System Précis

CONCLUSIONS

• TSCclock: for synchronization over networks
• Currently based on CPU oscillator accessible via TSC register
• Absolute Clock:

• far more robust than ntpd
• order of magnitude more accurate

• Difference Clock:
• exceptionally robust
• not available under ntpd
• more accurate than standard GPS solution for small time intervals

• Kernel and userland packet timestamping solutions
• Low computational requirements
• Runs as daemon in parallel with ntpd
• Works with existing NTP server network
• Packages written for BSD and popular Linux distributions

49 / 52

Introduction Clocks Synchronization Performance System Précis

CONCLUSIONS

• TSCclock: for synchronization over networks
• Currently based on CPU oscillator accessible via TSC register
• Absolute Clock:

• far more robust than ntpd
• order of magnitude more accurate

• Difference Clock:
• exceptionally robust
• not available under ntpd
• more accurate than standard GPS solution for small time intervals

• Kernel and userland packet timestamping solutions
• Low computational requirements
• Runs as daemon in parallel with ntpd
• Works with existing NTP server network
• Packages written for BSD and popular Linux distributions

50 / 52

Introduction Clocks Synchronization Performance System Précis

CONCLUSIONS

• TSCclock: for synchronization over networks
• Currently based on CPU oscillator accessible via TSC register
• Absolute Clock:

• far more robust than ntpd
• order of magnitude more accurate

• Difference Clock:
• exceptionally robust
• not available under ntpd
• more accurate than standard GPS solution for small time intervals

• Kernel and userland packet timestamping solutions
• Low computational requirements
• Runs as daemon in parallel with ntpd
• Works with existing NTP server network
• Packages written for BSD and popular Linux distributions

51 / 52

Introduction Clocks Synchronization Performance System Précis

LINKS

• Publications:
http://www.cubinlab.ee.unimelb.edu.au/articles

• TSCclock page:
http://www.cubinlab.ee.unimelb.edu.au/tscclock

52 / 52

	Introduction
	Clocks
	Synchronization
	Performance
	System
	Précis

