
A User Friendly TSC Clock

Erik Corell1, Philip Saxholm1, and Darryl Veitch2

1 Lund Institute of Technology, Lund University, Lund, Sweden
{cii99ec7,cii99ps7 }@i.lth.se

2 Australian Research Council Special Research Center for Ultra-Broadband Information
Networks (CUBIN), an affiliated program of National ICT Australia Dept. of Electrical &

Electronic Engineering, The University of Melbourne, Victoria 3010, Australia
d.veitch@ee.unimelb.edu.au

Abstract. Recently a new software clock and synchronisation algorithm based
on the TSC register (clock cycle counter) was developed, with several advantages
over the existing system clock. However, as it uses a modified kernel to support
driver timestamping, installation is non-trivial, limiting its use. We present a mod-
ified TSC clock without the need for kernel modifications, using only user-level
timestamps and existing system kernel timestamps exploited in a careful way.
Using weeks of test data, we show how the system performance is virtually iden-
tical to that of a kernel implementation. Compared against a GPS synchronised
DAG card reference, it performs very well under both BSD and Linux. We also
show how the system can replacentpd to improve the existing system clock.
The software allows for significantly improved timestamping for both packet and
internal system events, and is trivial to install. It is publicly available.

1 Introduction

In [1] (see also [2]) a new software clock was introduced, theTSC-NTPclock, whose
hardware basis is the Time Stamp Counter (TSC) register, which counts cycles of the
CPU oscillator. Like the existing system clock supported by most common kernels and
the associatedntpd (Network Time Protocol Daemon), a combination we denote by
SW-NTP, it makes use of NTP servers to synchronise itself inexpensively across a net-
work, but uses new algorithms designed from scratch to take advantage of the high
stability of modern hardware. Using months of data, the TSC-NTP clock was shown
in [1] to be extremely accurate for the measurement of time differences, very accurate
when measuring absolute time, and robust to many factors including loss of connectiv-
ity, network congestion, and even bogus server timestamps.

Part of the BSD implementation employed in [1] benefited from kernel modifica-
tions allowing the TSC to be read in the driver and made available to the user level.
Driver or kernel level timestamping substantially reduces process scheduling and in-
terrupt latency errors polluting timestamps, and is a significant advantage for packet
timestamping, including the NTP packets involved in the synchronisation algorithm it-
self. The existing NTP synchronised software clock, the SW-NTP clock, benefits from
kernel level timestamping, as it is built into existing kernels. Since this is not the case

2

for the TSC-NTP clock at present, using it involves the onerous task of installing a
modified kernel and driver, which few users are willing to contemplate.

The goal of this work is to explore the feasibility of, and to provide, a ‘user-level’
version of the TSC-NTP clock which works with existing kernels and drivers, allow-
ing it to be installed with little effort, but which offers comparable performance to
the current kernel version (based on FreeBSD 5.3). This is a non-trivial task because
the synchronisation algorithm uses filtering based on round-trip times (RTT), and in
particular on the measurement of the minimum RTT. User level timestamping com-
promises this in a fundamental way as we explain below. We discuss possible solu-
tions to this problem, and describe two effective techniques based on a judicious use
of user level timestamps and existing SW timestamps from the kernel. Tests of the
method in the laboratory and under operational conditions show that is very effective,
reducing user-level related errors to below 1µs in most cases. The resulting user ver-
sion, the USER-TSC-NTP orUSER-TSCclock, is easy to install and is available for
download athttp://www.cubinlab.ee.mu.oz.au/probing/software.
shtml . The software has been tested on FreeBSD 5.3 and Linux 2.6.6 only, however
being based on thePCAPpacket capture library and user-levelC code, it is insensitive
to OS type or version.

One of our techniques involves disablingntpd , which normally disciplines the
system clock, and instead synchronising it locally to the User-TSC clock. We also report
on the resulting improvements to the system clock robustness.

Section 2 provides necessary background into the SW-NTP and TSC-NTP clocks.
In Section 3 the core difficulty of user based synchronisation is explained, options dis-
cussed, and a solution architecture outlined and explored. Section 4 describes the per-
formance of the solution measured against the reference DAG solution, and Section 5
expands on the option of disciplining the SW using the USER-TSC clock, in order to
enhance the performance of each. We offer directions for ongoing work in Section 6.

2 Software Clocks

In this section we provide an introduction tailored to our needs. For more details on the
SW-NTP clock see [3], and for the TSC-NTP clock see [1].

2.1 Background

We denote true time, measured in seconds from some origin, byt. A real world clock
C(t) suffers anoffsetθ(t) from true time:θ(t) = C(t)− t.

If we assume a simple pure frequency model forC(t), we can define theskew, or
error in clock rate, as the constantγ in θ(t) = θ0 +γt. It is shown in [1] that thisSimple
Skew Modeldescribes oscillator behaviour well over timescales up to aroundτ∗ = 1000
[sec], however over longer periods clock drift is apparent, significantly influenced by
temperature variations due in particular to diurnal and air-conditioning cycles.

The oscillator stability characterizes drift by examining the variance of the rate
error yτ (t) = θ(t+τ)−θ(t)

τ relative to a timescaleτ , as a function ofτ . Provided that
the temperature environment is reasonable, rate errors do not exceed 1 part in107 or
0.1 PPM (Parts Per Million) over a wide range of scales to either side ofτ∗.

3

For clock synchronisation we exchange NTP packets with stratum 1 NTP servers,
which are themselves locally synchronised via GPS or atomic clock, in client-server
mode. As shown in Figure 1, we timestamp four key events: the times of departure and
reception of each NTP packet from host to server, and server to host. The basic idea
underlyingabsolutesynchronisation is that sinceta < tb < te < tf , so should quality
timestamps of these events. Thepath asymmetry, ∆ ≡ d→ − d←, whered→ ≡ tb − ta
andd← ≡ tf − te are the minimum forward and backward delays, dictates where the
server timestamps lie within the RTT interval. However, since∆ cannot be measured in
practice,∆ = 0 is used by algorithms, resulting in an offset error of∆/2. This inherent
limitation can be mitigated by selecting nearby servers, since|∆| ≤ tf − ta = r, the
minimum round-trip time.

2.2 The SW-NTP Clock

The system clock is based around the periodic interrupt cycle, of period typically10[ms]
or 1[ms], driving process scheduling. The TSC is used to interpolate times between in-
terrupts, but is not the fundamental basis of the clock. The interrupt cycle period is ob-
tained by counting a number of periods of another oscillator, of much lower frequency,
on the motherboard.

The clock derives a nominal rate at boot time, and then adjusts itself through three
mechanisms:reset, skewandphase, informed by filtering server timestamps obtained
throughntpd , and system timestamps at the host, with the aim of drivingθ(t) to zero.
Reset: discontinuous offsets added when extreme discrepancies in the range 128[ms]
to 1000[sec] occur. They are not directly accessible at user level.
Skew: the average clock increase per interrupt cycle relative to nominal rate, spread
out smoothly over the cycle. This is the main mechanism to adapt clock rate to reduce
the perceived offset. It is accessible from the user level as the variablefreq via the
ntpadjtime() function, and is updated after each new NTP packet.
Phase: correction factors (tickadj variable measured in ‘ticks’ of 1µs) added to fine
tune clock adjustments. They may or may not be applied at a given interrupt and this
information is not accessible, although the maximum value is (typically a fewµs).

The SW-NTP clock has access to timestamps made in the kernel, available at the
user level in an operating system independent way through thepcapcapture library.
This applies to all packets filtered for, including NTP packets used in synchronisation.

2.3 The TSC-NTP Clock

The TSC-NTP clock is based on the TSC oscillator only, and exploits its high stability
as described above. In sharp contrast to the SW-NTP clock, the TSC-NTP clock is built
around obtaining stable long-term rate estimates, rather than sacrificing rate to track
offset. It is in fact two clocks:
Cd(t) for time differences belowτ∗: here rate is essential, offset irrelevant, extremely
robust, very high accuracy possible.
Ca(t) for absolute time (or differences aboveτ∗): here drift must be tracked, robust-
ness lower, lower accuracy with∆ a limitation.

4

The synchronisation algorithm makes use of the two server timestamps per NTP
packet, but ignores the corresponding system timestamps, instead taking raw TSC times-
tamps in the driver. Currently this is implemented by modifying the Berkely Packet Fil-
ter (BPF) code in the FreeBSD 5.3 kernel. Thesestamps(4-tuple of timestamps) are
first used to provide an estimatêp of the average oscillator periodp. The underlying
clock is given byC(t) = p̂ ∗ TSC + θ0, whereθ0 is an estimate of the offset which is
not updated. An estimatêθ of the error in this clock is updated at each new NTP packet.
The two clocks are then:
Cd(t): ∆(t) = C(t2)− C(t1) = ∆(TSC) ∗ p̂,
Ca(t): Ca(t) = p̂ ∗ TSC + θ0 − θ̂.
By not changingθ0 and not applyinĝθ, the difference clock benefits from the underly-
ing rate stability of the TSC over small to medium timescales without being perturbed
by estimates of drift, which are irrelevant over those scales. By not changingθ0, instead
applying a correction only when reading, the absolute clock avoids varying its rate at
the whim of imprecise offset estimates, which greatly enhances stability and robustness.

The estimates of̂p and θ̂ are based on filtering NTP packets according to their
RTTs. The excess of RTT above an estimater̂ of the minimum RTTr is used as a basis
of rejection of distorted timestamps when measuringp̂, and as a weight when averaging
estimates made over several packets in the case ofθ̂.

3 A Solution: Kernel Timestamp Recreation
In this section we discuss the negative impacts of taking timestamps at user level, and
describe our approach for circumventing them.

3.1 Solution Design

Any timestamp of a packet arrival is clearly taken after it actually arrives! however on
the sending side the order is implementation dependent. Figure 1 shows the kernel TSC
timestampT k

tsc being made at timetktsc
1, before the departure att = ta. In our kernel

implementation this is in fact guaranteed, so the kernel TSC timestamps enclose the true
times. This is also generally true of system timestamping in the kernel under FreeBSD
and Linux including the versions we use here.

This enclosure property is extremely important for the RTT based filtering method-
ology, since it guarantees that the RTT seen by timestamps liesabovethe true valuer.
Without this, one can havêr < r, resulting in poor quality timestamps being perceived
as good, and good quality as poor. The central problem of user timestamping is that
this requirement is not only broken on the sending side, that istutsc > ta can occur as
illustrated in Figure 1, but transgressions are both common and severe. Another very
serious problem is that process scheduling significantly delays timestamping, resulting
in far fewer timestamps of good quality surviving filtering.
We examined three solutions approaches:

1 Re-engineer the synchronisation algorithm for user timestamping:
- non-trivial, prevents efficient reuse of existing synchronisation algorithm.

1 In general, we uset for event times andT for timestamps taken at those times. We use a
superscriptk (resp.u) to indicate timestamps made at kernel (resp. user) level.

5

Fig. 1.Timeline of NTP packet events, and kernel and user timestamping events relevant to either
the user or kernel TSC-NTP clock. Important intervals: A: delaydsw, B: SW interrupt latency,
C: bracket widthBu, D: backing error.

2 Control NTP packet generation at user level to ensuretutsc < ta:
- runs counter to stated aims of minimal installation effort and system impact.

*3 Recreatean estimatẽT k
tsc of the missing kernel level timestamp:

- avoids above drawbacks, allows modular approach: preprocessing phase passing
compensated timestamps to existing synchronisation algorithm.

We opt for option 3. It is feasible because in fact kernel timestampsare available:
the system timestamps obtained viapcap (seetksw in Figure 1). The idea is:
Subtracting thepcap timestamp from a second SW timestamp at user level yields the
correspondence between the kernel and user timestamps. A user TSC timestamp can
then be backdated to learn what it would have been at timet = tksw.

This approach remains challenging because of the varying nature of the SW-NTP
clock, and the difficulty of knowing the correspondence between its rate and that of the
TSC-NTP. Errors can occur, and it is essential to prevent them from resulting inr̂ < r.
We apply two levels of quality assessment of our estimated kernel timestampT̃ k

tsc:

Dangerous : evidence that an estimate is of danger tor̂ → discard packet
- minimal impact as synchronisation algorithm highly robust to loss.

Unreliable : evidence that the estimate is not excellent→ signal warning
- existing API to synchronisation algorithm allows for quality warnings.

3.2 Timestamp Backing Algorithm

We first describe one component of the algorithm, timestampbracketing.
We wish to simultaneously read the TSC and SW clocks at the user level, but as this

is impossible, we read the TSC, then the SW, and the TSC again, obtaining timestamps
Tu,1

tsc , Tu
sw, Tu,2

tsc , and setTu
tsc = (Tu,2

tsc + Tu,1
tsc)/2. If a scheduling timeout occurs, the

bracket-widthBu = p̂ ∗ (Tu,2
tsc − Tu,1

tsc) > 0 will be orders of magnitude larger than
the time needed,≈ 1µs, to call the user clock functiongettimeofday . If a delay in
context switching occurs, it can be a small factor larger. In either case, by retaking the

6

Blim = 0
do{

TSC1 = rdtsc()
SW = gettimeofday()
TSC2 = rdtsc()
B = TSC2 – TSC1
Blim += Binc

} while (B>Blim)
Blim –= (Binc+Bdec)
TSC1 += B/2

//
// T u,1

tsc

// T u
sw

// T u,2
tsc

// Bu

// ensure exit
//
// keep B tight
// T u

tsc

Fig. 2. Bracketing. Left: A single retry nearly always produces a tight bracket. Right: The algo-
rithm ensures we always do (we use Binc= 64 and Bdec=1 cycles (raw TSC units)).

triplet a stable value is quickly and reliably found. Due to the high stability of the CPU
oscillator, the error in measuringBu is well under 1[ns] even for very poor̂p.

We adaptively set thresholds for acceptance of a bracket to make the algorithm self-
calibrating across different systems. The details of the algorithm, which is guaranteed to
terminate, are given in Figure 2. The results show the difference inBu when retakes are
taken once, compared to not at all: a single retake provides an impressive performance
gain. Over lengthy trials (at low system load) the algorithm produced{0, 1, > 1} retries
with proportions{0.984, 0.016, < 0.00001}. In what follows, bracketing is always used
to produce the user comparison pair(Tu

tsc, T
u
sw). At high loads, the proportion of retries

would increase, however we do not expect this to be significant. We describe below
how to handle excessive delays between the user and kernel timestamps. These should
remain rare unless the system is permanently at very high load.

The objective of thebacking algorithmis to estimate what the TSC would have read
at timetktsc based on a user TSC timestampTu

tsc and the SW timestampsT k
sw andTu

sw:

T̃ k
tsc = Tu

tsc −
c

p̂
∗ (Tu

sw − T k
sw − j) (1)

whereDsw = Tu
sw − T k

sw estimates the delaydsw = tusw − tksw between the system
timestamps. The variablesc andj correct the correspondence between the two clocks.
Even ifdsw were a huge 1[sec], and̂p was out by a very large 1PPM, the resulting error
due to the USER-TSC clock would be only1µs. For simplicity therefore we ignore
errors inp̂ until the next section.

The factorc is the number of TSC seconds per one SW second at the time of
measurement. It corrects forskewerrors in the SW clock. Unfortunately,c, although
strongly related to the accessible skew parameterfreq , is not simply equivalent to it
for several reasons. Estimating it well would necessitate independently measuring the
nominal rate of the underlying oscillator and add considerable complexity to the algo-
rithm. As a result, we use the approximate value ofc = 1. Sincedsw is typically small,
so will the error be in most cases. It not, we act as follows:
If Dsw > 1[ms], which typically occurs in0.1% of packets, we signalwarning, and

7

Fig. 3.Linux Backing results. Emulation using SW-NTP (left), SW-TSC (right)

if it exceeds 10[ms], we signaldangerousand discard the packet (about 1 packet per
10000 (FreeBSD) or 5000 (Linux)).

Offset errors should be corrected byj, however since bothResetandPhasejumps
are not directly observable,j cannot be calculated, so we setj = 0. Instead, we detect
serious errors via sanity checking procedures which signaldangerousand discard the
packet. Note that resets can be of either sign, but are huge (>128µs) and rare, and so
allow very reliable detection, whereas phase adjustments are common but their accu-
mulation between NTP packets could be small or very large (many [ms]). In addition to
the above checks, which are also relevant for offset ifj > 0, we add:
Discard ifDsw < 0, or if there is a discrepancy in RTTs calculated with TSC and SW
timestamps. There are three scenarios according to where the offset jump occurred:
RTT packet in flight : backing unaffected, so TSC timestamps and RTT good. SW is
affected, it’s RTT will be different=⇒ can detect→ discard.
Between SW stamps at receiver: backing unaffected at sender but not at receiver
=⇒ bad RTT from TSC, but SW RTT good=⇒ can detect→ discard.
Between SW stamps at sender: backing unaffected at receiver but not at sender=⇒
TSC RTT bad. SW also affected at receiver, RTT also bad, but with same direction and
size, =⇒ can’t detect.

Since SW-NTP makes decisions after NTP packets return, only the second scenario
should actually occur, and even then very rarely. We encountered no examples of unde-
tected offset errors in several weeks of testing on different machines and systems, using
a detection threshold of1[ms], however there is no guarantee errors cannot occur.

3.3 Validation

In a user level implementation there are no kernel TSC timestamps against which to
validate our estimate. We address this in two ways:emulation, andcomparison kernel.

We emulate the kernel timestamp at user level simply by reading the SW and us-
ing the systemusleep() function to create a loosely controlled scheduling delay and
context switch, after which we perform bracketing on a second SW timestamp. We
also bracket the first ‘kernel’ SW timestamp and compare it against the backing algo-
rithm. Although at user level we usedgettimeofday rather than the kernel function
microtime , by insisting on small ‘kernel’ bracket widths we avoid any potential bias.

We performed emulation under Linux and BSD on five different computers over a
period of 2 weeks and the results were very consistent, with errors bounded by around
±2 µs for BSD and±4 µs for Linux. A histogram of representative results under Linux
is shown in Figure 3, and for BSD in Figure 4. Two version of the USER-TSC are given
in each, depending on how the SW was synchronised, and the results are all comparable.

8

Fig. 4. BSD Backing results. Left: Emulation using SW-NTP (top), SW-TSC (bottom). Right:
comparison kernel using SW-NTP (all but one value shown). Errors are of the order of 1µs.

Details on the the ‘SW-TSC’ alternative are explained in Section 5. We conclude that
the backing algorithm performs very well with high probability on both systems.

We also modified the FreeBSD 5.3 kernel to recover TSC timestamps made in the
instruction immediately following the systemmicrotime call, allowing a direct val-
idation of the algorithm in the BSD case. Although bracketing was not used, it is most
unlikely that an interrupt was served between the back to back timestamps in kernel
context. Figure 4 shows a median error of just a few [ns] and a narrow interquartile
range under 1µs, consistent with the emulation results. These results were convincingly
confirmed in a continuous two month testing run, which yielded backing error quantiles
[min, 0.01, 25, 50, 75, 99.999,max] equal to:
Sending side: [−9.7,−1.7,−0.32, -0.002, 0.31, 1.54, 1.6] µs
Receiving side:[−9.0,−1.0,−0.10, 0.200, 0.50, 1.42, 19.] µs
These give us high confidence in the algorithm performance under BSD, and the utility
of the emulation, and therefore of Linux performance also.

4 Performance of USER-TSC

With the backing algorithm correcting TSC based timestamps down to the accuracy
of server timestamp resolution, we expect to see the USER-TSC clock perform very
similarly to the kernel version. Nonetheless we directly test the clock here in case rare
failures interact poorly with the synchronisation. For space reasons we focus on the
absolute clockCa only. The difference clockCd is far more accurate and robust than
Ca, and we could detect no difference between the kernel and user versions.

Figure 5 shows the comparison for absolute time. In parallel, each clock is tested
against reference timestamps made by a GPS synchronised DAG card just prior to enter-
ing the host, under identical conditions. The resulting histograms are essentially identi-
cal: we have succeeding in making the impact of user level timestamping negligible.

The algorithmic performance of either absolute clock is revealed by removing the
systematic bias due to path asymmetry. Using the DAG reference andr̂, we estimate

9

Fig. 5.Clock error of TSC-NTP using DAG: Left: kernel version, Right: user version.

∆ and subtract∆/2 ≈ 228µs from the histograms, to obtain a medium error of≈
32µs, consistent with results from [1]. The inter-quartile range of 62µs suffers from
interrupt latency effects of the order of±20µs due to this imperfect ‘external’ validation
methodology, where the reference DAG and host timestamps are separated in time (see
Figure 1). Particularly large interrupts can be detected and have been filtered out, but
for space reasons we omit these details here.

5 The Next Step: controlling SW

Although the backing algorithm performed extremely well, it may be possible in rare
cases for errors to corrupt timestamps, and hencer̂. The algorithm could in principle be
made more robust by actively taking control of the SW, thereby completely eliminating
the problem of unobservable resets, phase adjustments, and poorly known true skew.
In this section we investigate this idea, which, although involving changes to system
configuration, is still at the user level. The potential benefits are twofold:
1. a more robust (and accurate) locally controlledSW-TSCsystem clock
2. a more robustUSER-TSCcclock using SW-TSC timestamps for backing.

Using a standard configuration option, we stopntpd from disciplining SW, but
allow it to continue to send packets to the NTP server. We then perform a local slaving
of SW to USER-TSC through varyingfreq . The algorithm, which is a simple proof of
concept implementation, can be outlined as:

Local Synchronisation Algorithm
Initialisation: after USER-TSC warm-up, setSW (t) = Ca(t), activate USER-TSCc.

For each NTP packet, after USER-TSCc processing, setθSW = SW (t)− Ca(t).
Adjust freq such thatθSW would reduce to zero over512 [sec].
If θSW > 256 [ms], resetSW (t).

In a nutshell, we do see evidence of increased robustness as expected, however accu-
racy, in this implementation, actually drops. This is best seen in Figure 6 (top left) where
USER-TSCc and SW-TSC display a median difference of0.85[ms]. This unacceptably
large discrepancy can be explained in terms of the heavily damped nature of the al-
gorithm, which was chosen for simplicity and to be conservative in terms of stability.
Damping (like a moving average filter) is well known to result in a lag in tracking. We
are confident that with further work, a more reactive and sophisticated algorithm could
reduce this by at least an order of magnitude without sacrificing stability.

The top right plot in Figure 6 gives the absolute error (using DAG) in USER-TSCc.
The distribution body is consistent with the results from Section 4, spread out by the
‘lag’ effect. The bottom plot is the error for USER-TSC. Here the distribution body

10

Fig. 6. Effect of local control: Top Left: SW-TSC compared to USER-TSCc, Top Right: error of
USER-TSCc, Bottom: outliers present in error of USER-TSC which uses SW-NTP.

is not spread, however outliers are present which are absent under the smoother local
control, demonstrating the lower robustness when using SW-NTP for backing.

Naturally, the feedback between the SW and TSC clocks in this configuration must
be managed carefully to ensure stability. This is achieved through the initialisation step,
a highly damped local control, and because coupling in the reverse direction is inher-
ently weak, as backing errors are mostly proportional todsw which is small.

Finally, in terms of the effect of backing when controlling the SW, results for Linux
appear in Figure 3, and for BSD in Figure 4, and are very comparable.

6 Conclusion
We have provided methodologies and software to reliably reproduce kernel level TSC
raw timestamps based only on information available at user level. We have used this
to create a user version of the TSC-NTP clock, USER-TSC, which does not require
any kernel or driver modifications, allowing the advantages of this new clock to be
used for a wide variety of applications requiring accurate and robust timestamping. We
showed how robustness could be enhanced for the USER-TSC clock and the SW clock
by synchronising the latter locally off the former. Results are very promising. Future
work will focus on improving the local synchronisation and benchmarking the USER-
TSC clock fully in extensive trials.

References

1. Veitch, D., Babu, S., Ṕasztor, A.: Robust synchronization of software clocks across the in-
ternet. In: Proc. 2004 ACM SIGCOMM Internet Measurement Conference, Taormina, Italy
(2004) 219–232

2. Pásztor, A., Veitch, D.: PC based precision timing without GPS. In: Proceeding of ACM
Sigmetrics 2002 Conference on the Measurement and Modeling of Computer Systems, Del
Rey, California (2002) 1–10

3. Mills, D.: Internet time synchronization: the network time protocol. IEEE Trans. Communi-
cations39 (1991) 1482–1493 Condensed from RFC-1129.

