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Introduction

Software clocks have some obvious advantages

• Cheap way for desktops or servers to sync to a master clock

• Easy to deploy (no antenna, no separate cabling)

• Seamless integration with user applications (no need to
rewrite code, access a specific device . . . )

. . . but unavoidable issues (network and in-host)

• Delay asymmetry (hard problem)

→ median clock error as high as 100 µs
• Delay variability (easier problem)

→ clock error standard deviation in 1-10 µs range
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One Cause of Delay: In-Host Timestamping

int some_function()
{
    int foo;

    /* Some processing */
    statement_1;

    /* Need to know what time it is */
    clock_gettime(CLOCK_REALTIME);

    /* Some more processing */
    statement_2;
  
    return (0);
}

- System Call Enter

- Kernel routine calls

- Hardwake Counter access
    - TSC, HPET, ACPI
    - 1588 clock device

- System Call Exit

- Scheduler impact?

How much
time does
this take?
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Impact on Software Clocks

Software clocks are userland applications

• Rely on network packet departure / arrival timestamps

• Timestamping latency affects final clock error

• The smaller the network delay, the more important the in-host
timestamping latency

Solutions

• Robust algorithm, tight filtering

• Measure / estimate in-host delays
• Is it possible?
• Feasible in production environment?
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Objectives

• Proof of concept to benchmark latency of a production system

• Characterise in-host delays within the network stack

• Provide results relevant to software clocks and their
timestamping strategies

• ntpd
• ptpd
• RADclock

5 / 15



Motivation Measuring System Latency Experiment Conclusion

Probing the OS

Software Probing Tools

• Tools have emerged over the past 5-7 years.

• SystemTap: Linux

• DTrace: Solaris, Mac OSX, FreeBSD

DTrace on FreeBSD 9.0

• Ease of use, lightweight, targets production environments

• DTrace probes available in kernel and user context

• Scripts specify which probes fire (e.g. syscall entry)
• Probes are investigation points to inspect function properties
• Simple actions: increment counters, record clock time
• Data collected can be aggregated
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DTrace Clock & Probe Effect
DTrace Clock

• Based on fast access TSC (Time Stamp Counter)

• Effectively a scaled TSC counter that does not track drift

• Clock error may be of the order of 50 PPM
• Very bad absolute clock
• Ideal difference clock (error below 100ns over a 1ms interval)

DTrace Probe Effect

• Probe effect of the order of a couple of µs per probe
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Experimental Setup

Hub

Hardware Packet
Timestamping
Control Host

DAG
UDP test
packets Server

UDP test
packets Client KERNEL

NIC

UDP
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Driver

USERLAND

UDP Client

Probe TX

Probe RX

• UDP client and server exchange small UDP test packets

• DAG card hardware timestamp probes (control data)

• DTrace probes deployed within the network stack

• DTrace clock is read when UDP packet is processed
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In-Host Timestamping locations (1/2)

DTrace Probes attached to timestamping functions entry points

• Userland (ntpd)
• gettimeofday(), clock gettime()

• Socket timestamping SO TIMESTAMP (ptpd)
• Incoming packets timestamped in FreeBSD socket layer
• Copy of outgoing packet sent on loopback interface in RX path

• Berkeley Packet Filter (RADclock)
• Driver dispatches a copy of packet to BPF subsystem

• NIC Driver (Hardware timestamps)
• Timestamping function in Intel i350 driver
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In-Host Timestamping locations (2/2)

• All timestamps created with the same clock (DTrace)

• Measure delays using DTrace difference clock

• Driver timestamp used as reference
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Experiment: Stress Testing

Spice things up with stress tests

• Continuous measurement over normal and stress periods

• Alternate 2 hour periods

Stress scenarios (using stress2 test suite)

• NS: Non-Stress period

• IO: writes and reads of files of random size to generate high
disk activity, plus memory swapping

• SC: System Calls resulting in many user/kernel contexts
switches

• IP: transmission of UDP packets on loopback interface to
stress the network stack
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One-Way Delays: Outgoing Path
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Experiment Setup: Where to Probe

• Outgoing path has both larger
delays, and higher variability.

• Note no device polling here

• bpf performs much better than
so timestamp and userland

• Outgoing so timestamp, shows
negative OWD in all scenarios

• under IP minimum delay is
-356 µs > RTT !!

• so timestamp breaks causality
(packets transmitted before
their timestamp is made)
→ cannot measure RTTs

• Userland shows larger delays
and variability
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Evaluation of In-Host Asymmetry

Paths asymmetry → median clock error

• With IEEE 1588, LAN and hardware
master clock:

• RTT gets smaller
• relative contribution of in-host path

to asymmetry increases

Calibrate and compensate for asymmetry

• bpf has small bound and consistent
asym. under stress

• so timestamp breaks causality

• userland has large bound and may
suffer from large variations
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Conclusion

Timestamping location helps fighting delay variability

• Avoid so timestamp no reliable bounding of RTT possible

• bpf is best choice for performance

• couple it with good filtering in sync. algo does a good job

Compensating for in-host asymmetry

• bpf has lower bound → smaller asymmetry

• bpf has lower bound → better estimate of asymmetry

Variation of asymmetry under load remains a barrier to achieving
1 µs precision with software clocks.

http://www.synclab.org/radclock
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