
Motivation Measuring System Latency Experiment Conclusion

Probing the Latencies of Software Timestamping

Benjamin Villain1, Matthew Davis2, Julien Ridoux2,
Darryl Veitch2 Nicolas Normand1

1 Université de Nantes, IRCCyN UMR CNRS 6597, Nantes, France
benjamin.villain@gmail.com, nicolas.normand@univ-nantes.fr

2 Electrical & Electronic Engineering Dpt, The University of Melbourne, Australia
{matt, julien}@synclab.org, dveitch@unimelb.edu.au

This work was supported in part by a research grant from Symmetricom Inc.

1 / 15

Motivation Measuring System Latency Experiment Conclusion

Introduction

Software clocks have some obvious advantages

• Cheap way for desktops or servers to sync to a master clock

• Easy to deploy (no antenna, no separate cabling)

• Seamless integration with user applications (no need to
rewrite code, access a specific device . . .)

. . . but unavoidable issues (network and in-host)

• Delay asymmetry (hard problem)

→ median clock error as high as 100 µs
• Delay variability (easier problem)

→ clock error standard deviation in 1-10 µs range

2 / 15

Motivation Measuring System Latency Experiment Conclusion

One Cause of Delay: In-Host Timestamping

int some_function()
{
 int foo;

 /* Some processing */
 statement_1;

 /* Need to know what time it is */
 clock_gettime(CLOCK_REALTIME);

 /* Some more processing */
 statement_2;

 return (0);
}

- System Call Enter

- Kernel routine calls

- Hardwake Counter access
 - TSC, HPET, ACPI
 - 1588 clock device

- System Call Exit

- Scheduler impact?

How much
time does
this take?

3 / 15

Motivation Measuring System Latency Experiment Conclusion

Impact on Software Clocks

Software clocks are userland applications

• Rely on network packet departure / arrival timestamps

• Timestamping latency affects final clock error

• The smaller the network delay, the more important the in-host
timestamping latency

Solutions

• Robust algorithm, tight filtering

• Measure / estimate in-host delays
• Is it possible?
• Feasible in production environment?

4 / 15

Motivation Measuring System Latency Experiment Conclusion

Objectives

• Proof of concept to benchmark latency of a production system

• Characterise in-host delays within the network stack

• Provide results relevant to software clocks and their
timestamping strategies

• ntpd
• ptpd
• RADclock

5 / 15

Motivation Measuring System Latency Experiment Conclusion

Probing the OS

Software Probing Tools

• Tools have emerged over the past 5-7 years.

• SystemTap: Linux

• DTrace: Solaris, Mac OSX, FreeBSD

DTrace on FreeBSD 9.0

• Ease of use, lightweight, targets production environments

• DTrace probes available in kernel and user context

• Scripts specify which probes fire (e.g. syscall entry)
• Probes are investigation points to inspect function properties
• Simple actions: increment counters, record clock time
• Data collected can be aggregated

6 / 15

Motivation Measuring System Latency Experiment Conclusion

DTrace Clock & Probe Effect
DTrace Clock

• Based on fast access TSC (Time Stamp Counter)

• Effectively a scaled TSC counter that does not track drift

• Clock error may be of the order of 50 PPM
• Very bad absolute clock
• Ideal difference clock (error below 100ns over a 1ms interval)

DTrace Probe Effect

• Probe effect of the order of a couple of µs per probe

Outgoing Incoming
20

30

40

50

D
el
ay

[µ
s]

0 int. probe

1 int. probe

2 int. probes

7 / 15

Motivation Measuring System Latency Experiment Conclusion

Experimental Setup

Hub

Hardware Packet
Timestamping
Control Host

DAG
UDP test
packets Server

UDP test
packets Client KERNEL

NIC

UDP

IP

Driver

USERLAND

UDP Client

Probe TX

Probe RX

• UDP client and server exchange small UDP test packets

• DAG card hardware timestamp probes (control data)

• DTrace probes deployed within the network stack

• DTrace clock is read when UDP packet is processed

8 / 15

Motivation Measuring System Latency Experiment Conclusion

In-Host Timestamping locations (1/2)

DTrace Probes attached to timestamping functions entry points

• Userland (ntpd)
• gettimeofday(), clock gettime()

• Socket timestamping SO TIMESTAMP (ptpd)
• Incoming packets timestamped in FreeBSD socket layer
• Copy of outgoing packet sent on loopback interface in RX path

• Berkeley Packet Filter (RADclock)
• Driver dispatches a copy of packet to BPF subsystem

• NIC Driver (Hardware timestamps)
• Timestamping function in Intel i350 driver

9 / 15

Motivation Measuring System Latency Experiment Conclusion

In-Host Timestamping locations (2/2)

• All timestamps created with the same clock (DTrace)

• Measure delays using DTrace difference clock

• Driver timestamp used as reference

10 / 15

userland

so timestamp

bpf

driver

DAG

T o
u T o

so T o
b T o

dr T o
g T i

g T i
dr T i

b T i
so T i

u

dob d ib
doso d iso

dou d iu

gRTT

drRTT

Time t

Motivation Measuring System Latency Experiment Conclusion

Experiment: Stress Testing

Spice things up with stress tests

• Continuous measurement over normal and stress periods

• Alternate 2 hour periods

Stress scenarios (using stress2 test suite)

• NS: Non-Stress period

• IO: writes and reads of files of random size to generate high
disk activity, plus memory swapping

• SC: System Calls resulting in many user/kernel contexts
switches

• IP: transmission of UDP packets on loopback interface to
stress the network stack

11 / 15

Motivation Measuring System Latency Experiment Conclusion

One-Way Delays: Outgoing Path

NS
0

20

40

60

D
el
ay
s
[µ

s] userland dou

so timestamp doso

bpf dob

IO
0

50

D
el
ay
s
[µ

s]

SC
0

50

D
el
ay
s
[µ

s]

IP
20 40 60 80 100

0

50

Time [min]

D
el
ay
s
[µ

s]

12 / 15

Motivation Measuring System Latency Experiment Conclusion

Experiment Setup: Where to Probe

• Outgoing path has both larger
delays, and higher variability.

• Note no device polling here

• bpf performs much better than
so timestamp and userland

• Outgoing so timestamp, shows
negative OWD in all scenarios

• under IP minimum delay is
-356 µs > RTT !!

• so timestamp breaks causality
(packets transmitted before
their timestamp is made)
→ cannot measure RTTs

• Userland shows larger delays
and variability

13 / 15

0

100

200

300

400

u
se
rl
a
n
d

Outgoing Incoming

0

50

100

so
ti
m
es
ta
m
p

NS IO SC IP
0

20

40

b
p
f

NS IO SC IP

Motivation Measuring System Latency Experiment Conclusion

Evaluation of In-Host Asymmetry

Paths asymmetry → median clock error

• With IEEE 1588, LAN and hardware
master clock:

• RTT gets smaller
• relative contribution of in-host path

to asymmetry increases

Calibrate and compensate for asymmetry

• bpf has small bound and consistent
asym. under stress

• so timestamp breaks causality

• userland has large bound and may
suffer from large variations

14 / 15

NS IO SC IP

−50

0

50

u
se
rl
a
n
d
[
µs

]

NS IO SC IP

−300

−200

−100

0

so
ti
m
es
ta
m
p
[
µs

]

NS IO SC IP
−20

−10

0

10

20

b
p
f
[
µs

]

Motivation Measuring System Latency Experiment Conclusion

Conclusion

Timestamping location helps fighting delay variability

• Avoid so timestamp no reliable bounding of RTT possible

• bpf is best choice for performance

• couple it with good filtering in sync. algo does a good job

Compensating for in-host asymmetry

• bpf has lower bound → smaller asymmetry

• bpf has lower bound → better estimate of asymmetry

Variation of asymmetry under load remains a barrier to achieving
1 µs precision with software clocks.

http://www.synclab.org/radclock

15 / 15

http://www.synclab.org/radclock

	Motivation
	Measuring System Latency
	Experiment
	Conclusion

