
Probing the Latencies of Software Timestamping
Benjamin Villain∗, Matthew Davis†, Julien Ridoux†, Darryl Veitch† and Nicolas Normand∗
∗LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597, Nantes, France

benjamin.villain@gmail.com, nicolas.normand@univ-nantes.fr
†Department of Electrical & Electronic Engineering, The University of Melbourne, Australia

davis@student.unimelb.edu.au, {jridoux, dveitch}@unimelb.edu.au

Abstract—Dealing effectively with latency is the key to accurate
and reliable timekeeping over networks. Software components of
timekeeping, including synchronisation algorithms such as ntpd,
RADclock, and ptpd, must deal with the significant and highly
variable latencies inherent to common operating systems. Using
the DTrace system profiling tool, we provide an accurate break-
down of the latencies between common timestamping locations
in the FreeBSD Operating System. We report on how these
latency components react to stress patterns of different kinds,
and determine which timestamping strategies result in the lowest
latency, and the smallest in-host asymmetry. Our results can
be used to improve timestamping and timekeeping for software
clocks.

Index Terms—RADclock, software clocks, synchronization, ac-
curate timestamping, latency profiling

I. INTRODUCTION

The essential variable to control when synchronising a local
clock to a remote reference across a network is latency, which
delays both the arrival of timing information, and the act
of timestamping. Latencies are introduced within network
elements, the local host system, and the time-servers them-
selves. With strong hardware support across the system end-
to-end latency can be low, and more importantly, have very
low variability. Software components however introduce much
larger delays, and far more extreme variability.

Consider software clocks defined on common multi-tasking
operating systems, built on commodity hardware. The latency
components arising from such a host are primarily the result
of the interrupt processing, process scheduling and context
switching nature of the operating system, which both creates
and disciplines the software clock, and performs the times-
tamping. They are present across the system and are ultimately
unavoidable. However, by instrumenting the system to reveal
the web of component latencies, to determine their sizes,
variability, and relevant asymmetries, we can gain important
insight into the inherent limitations of software timing. This
information can then be used to improve both the software
clock and timestamping, and to determine bounds on the
associated errors.

In this paper we provide a breakdown of in-host latency
components of key importance for timekeeping. These include
the latencies between the packet timestamping locations typi-
cally used by ntpd [1], RADclock [2], ptpd [3], and timekeeper
[4], and span user, kernel, and (to a close approximation) NIC
based timestamping. Our study is focussed on the FreeBSD
operating system, as it is a stable and mature platform within

which to perform metrology, and because it supports the
DTrace system profiler tool. We use DTrace to measure the
latency components with total error under 1 µs. The host
hardware is a common Intel based commodity server.

Our goal is not only to understand the latency breakdown
in general terms, but also to examine how latency components
change their characteristics under different conditions. To this
end we apply a set of stress tests separately targeting kernel
interrupt processing, disk access, and the network stack. To
the best of our knowledge a careful breakdown of this kind
for latency affecting timekeeping has not appeared before.

As an illustration of the potential applications of our work,
we include an analysis of the in-host component of round-
trip asymmetry corresponding to common choices for pair-
ing packet timestamping locations from the outgoing and
incoming directions. This asymmetry, which contributes to
overall asymmetry in the host 7→ server 7→ host path, impacts
directly on clock synchronization algorithms, including all
common NTP and PTP clients using software timestamping,
which all assume it to be zero. In LAN environments this
asymmetry induced error can easily dominate other sources.
Our approach can be used to measure and hence remove
the host component of this error to the benefit of all host
synchronization algorithms. We include a discussion of the
suitability of different timestamping choices as a function of
system stress scenarios.

The remainder of the paper is structured as follows. Sec-
tion II provides needed background on the test system, DTrace,
and timestamping. Section III describes in detail the locations
defining the latency components we measure and evaluates the
probe effect. Section IV then presents the main results on the
latency components. Section V discusses applications of the
results and describes the implications for in-host asymmetry.
We conclude in Section VI.

II. BACKGROUND

In this section we describe our test system, the profiling tool
DTrace, and our timestamping methodology.

A. Test System

Experiments were conducted with the test host dingo, a
3.0GHz Xeon Quad Core running FreeBSD 9.0 with DTrace
and RADclock (version 0.4.0) kernel support. Although results
are architecture dependent, we would not expect them to vary
greatly. Operating system dependence however is strong.



As an external hardware reference we use a 3.7GE DAG
card [5] to timestamp packets passing in and out of the
host, via a 100Mbps Ethernet hub as tap. The PPS input to
the DAG is provided by a PRS-10 rubidium atomic clock,
synchronized to a roof mounted Trimble Acutime Gold GPS
receiver, resulting in a final precision around 40 ns.

B. DTrace

The “Dynamic Tracing” or DTrace framework [6] was
originally developed by Sun Microsystems and released in
2005. DTrace is a free and open source system profiling
framework that provides means for low overhead inspection
of a system at runtime. It is available for Solaris, Mac OSX
and FreeBSD (a port to Linux is incomplete).

A DTrace probe is an event in the system which can be
monitored. Examples are input/output operations, or execution
reaching the entry or exit point of any function or system
call. Once a probe is fired, predicates are tested to control the
execution of actions that can examine, and conditionally store,
input arguments, the return value, or other information such
as the process-id. For our purposes we define probes at points
where timestamps are typically made, and the action is simply
the making and storage of a timestamp, together with condi-
tional printing actions to assist in timestamp identification.

A key advantage of DTrace is that it does not require modi-
fication of the profiled applications, instead placing thousands
of pre-compiled probes throughout a system, which can be
augmented by user defined probes. Another advantage is that
only those probes which are actually activated generate any
probe effect [7], that is a latency-inducing overhead that could
distort the system latencies we seek to measure. Since DTrace
probes can operate within kernel context natively, the probing
effect of active probes is less than that of user context based
solutions like truss or strace. It is also lower than that of
earlier kernel-based tools, as the normal execution of probed
functions is not interrupted. In Section III-B we measure the
size of DTrace’s probe effect for our experiments and describe
how we account for it.

C. Timestamping Methodology

In this paper we are ultimately concerned with measuring
time differences only, not absolute time.

The timestamping mechanisms of DTrace, timestamp and
vtimestamp, are independent of the system clock. They are
based on the TimeStamp Counter (TSC), which counts CPU
cycles since boot, and an estimate p of its period. We are
only concerned with timestamp, which returns a timestamp
of p ·TSC, and so measures time differences as ∆t = p ·
(TSC(t2)− TSC(t1)).

DTrace relies on the OS kernel to obtain an estimate of
p, usually computed by counting the number of CPU cycles
elapsed during a call to a sleep(duration) function whose
actual duration is defined by the approximately known period
of a second counter (such as HPET). Such estimates have an
error, typically of the order of 50 Parts Per Million (PPM),
which is a function of the temperature and system load at
calibration time, and does not track changes over time. As

most of time intervals we measure are under 1ms, the error
in DTrace timing should still be below 100 ns in most cases,
smaller than the error due to probe effect. For more general use
however, where time intervals may be larger, the error may be
unacceptable. In future work we will significantly reduce it by
using timestamp in conjunction with the RADclock difference
clock [2], [8].

One of the advantages of using the TSC, enjoyed by DTrace,
is that it can be read with ‘universally low’ latency from either
user or kernel context via the rdtsc() function, a wrapper for
assembler instructions that read the TSC register(s). This fact,
combined with DTraces’s flexible probe access, means that
we can accurately measure the duration of any time interval
across the system, even crossing the kernel/user divide, without
any modifications either to the kernel or user programs.

Care must be taken when using the TSC for timekeeping on
systems with multiple CPU cores and/or power management.
DTrace is designed to detect and compensate for such effects.
Moreover, our test host is a recent generation with an ‘invariant
TSC’, immune to such effects.

III. EXPERIMENTAL METHODOLOGY

Our methodology derives from that of previous work, no-
tably [9]. Briefly, it is based on a series of UDP test packets
sent from the host to an echo server on the LAN and back, as
a set of triggers for timestamps made at a set of measurement
points in both the incoming and outgoing directions, both
within and external to the host (see Figure 1).

In this paper we use DTrace for all in-host timestamping,
both in kernel or user context (the latter is supported from
FreeBSD 9.0). For uniformity and convenience, we use DTrace
even though in many cases, since we target typical timestamp-
ing locations, alternative mechanisms to recover the TSC exist.

We now detail and explain our probe placement. In Sec-
tion III-B we evaluate the associated probe effect.

A. Probe Locations

Our aim is to cover the full set of timestamping locations
normally used to timestamp packets in FreeBSD, namely:
userland, the so timestamp associated with sockets, and the
bpf (Berkely Packet Filter) subsystem. In addition, we take
timestamps deep in the driver, as close to the NIC as possible.
Together with the external DAG timestamps, these allow us
to evaluate the latency component within the NIC itself. More
importantly, they also give an excellent approximation of the
locations where hardware timestamps on the NIC would be
taken, were they supported, and hence enable the associated
potential improvement in latency to be evaluated.

The timestamping locations are illustrated in Figure 1. Apart
from the network latency gRTT ≈ 210 µs (measured by DAG
and compressed in the figure), the timestamps are shown to
scale according to actual median values under light load. An
exception is T o

so, which is triggered roughly as shown, but
the timestamp itself, being made of a multicast copy sent
back up the stack as a received packet via the loopback
interface, occurs must later, as we see in detail below. Since
a so timestamp can only be made on a received packet, this



userland

so timestamp

bpf

driver

DAG

T o
u T o

so T o
b T o

dr T o
g T i

g T i
dr T i

b T i
so T i

u

dob dib
doso diso

dou diu

gRTT

drRTT

Time t

Fig. 1. Timeline showing the locations where probes are placed to track, via DTrace probe timestamps, the passage of a packet from userland, to an external
server, and back. The common timestamping locations of userland, so timestamp, and bpf (based on packet copies), are supplemented by timestamps close
to the host-NIC interface. The role of the external DAG timestamps is to allow the network-side latency, and hence the in-NIC latency, to be evaluated.

trick is the only way in which one can obtain an outgoing
so timestamp.

The details are as follows. Unless otherwise specified, the
probe is triggered at entry to the listed function.

userland: used by ntpd, ptpd on send if so timestamp fails.
out-probe (T o

u ) clock gettime (on return) in UDP test client,
in-probe (T i

u) clock gettime (on return) in UDP test client.
so timestamp: used by ptpd, various active probing tools.

out-probe (T o
so) ip savecontrols via IP loopback interface,

in-probe (T i
so) ip savecontrols in UDP part of IP stack.

bpf : packet socket used by libpcap, RADclock, wireshark.
out-probe (T o

b ) sysclock getsnapshot (on return) in bpf ,
in-probe (T i

b ) sysclock getsnapshot (on return) in bpf .
driver: locations as close as possible to the NIC

out-probe (T o
dr) user defined probe in igb xmit in driver,

in-probe (T i
dr) user defined probe in igb rxeof in driver.

DAG: used by passive monitors, our testbed validation
out (T o

g ) obtain absolute timestamp using dagconvert,
in (T i

g) obtain absolute timestamp using dagconvert.

Because of the need to reliably match the set of probes
corresponding to each test packet, probes were sometimes set
on functions which called the target clock reading routines.
We denote loCation specific round-trip-times (RTT) as
cRTT = T i

c − T o
c , where c ∈ {u, so, b, dr, g}. To isolate

important RTT components we define the partial RTTs as
cRTTx = cRTT − xRTT where the eXternal component
xRTT has been excised. Thus gRTT = T i

g − T o
g is the

RTT of the external network as seen by DAG, whereas
drRTT = T i

dr − T o
dr is the RTT of the network plus NIC

as seen by the driver timestamps. Hence the in-NIC latency
is just the partial RTT drRTTg = drRTT − gRTT , whose
measured minimum is 14.5 µs.

The cases of key importance for this paper are the in-
host components relative to the driver timestamps, namely
cRTTx with c ∈ {u, so, b}, and x = dr. Each of these
decomposes into the incoming and outgoing in-host delay
components, shown in the figure, as cRTTdr = doc + dic,
where doc = T o

dr − T o
c and dic = T i

c − T i
dr.

B. Probe Effect

To quantity the probe effect, we measure the outgoing delay
dou = T o

dr − T o
u across the system using the probes at the

user and driver locations, but with no others active. We repeat
this with the so timestamp probe active, and then again after
activating the bpf probe (the extra timestamps are not used).
We perform the analogous operation on the incoming side to
measure three variants of diu = T i

u−T i
dr, and in each direction

we repeat the experiment 3600 times.

Figure 2 gives summary histograms of the three cases in
each direction. In each the box shows the inter-quartile range
(iqr) containing the median line, with whiskers marking the
minimum and maximum values. The increase from 0 up to 2
intermediate probes yields an increase due to the probe effect
which is roughly linear, but can vary roughly from 1 to 8 µs.

In all experiments all probes were in place. To first order
the bpf delays do not require correction as there are no probes
between the driver and the bpf . The so timestamp and userland
delays have 1 and 2 intermediate probes respectively, which
the relevant differences in medians shown in the figure were
used to correct. We believe the resulting error is bounded by
1 µs in almost all cases.

Outgoing Incoming
20

30

40

50

D
el

ay
[µ

s]

0 int. probe
1 int. probe
2 int. probes

Fig. 2. Boxplots of the outgoing in-host delay (left set) and incoming delay
(right set) measured with 0, 1 or 2 intermediate active probes. The increase
in median latency is due to the probe effect and is close to linear.



NS

0

20

40

60
D

el
ay

s
[µ

s]
userland dou
so timestamp doso
bpf dob

userland diu
so timestamp diso
bpf dib

IO

0

50

D
el

ay
s

[µ
s]

SC

0

50

D
el

ay
s

[µ
s]

IP

20 40 60 80 100

0

50

Time [min]

D
el

ay
s

[µ
s]

20 40 60 80 100

Time [min]

Fig. 3. Outgoing (left column) and Incoming (right column) delay timeseries over 3 hours. Stress scenario from top to bottom: NS (no stress), IO (disk
activity), SC (system calls), IP (UDP on loopback). In both directions and all scenarios the bpf locations are superior. In all scenarios the orders dob < dou
and dib < diso < diu are respected, but doso is not necessarily contained within [dob , d

o
u] and in all scenarios is even seen to take negative values.

IV. LATENCY COMPONENT ANALYSIS

The driver probes are the closest points in the system to
the host-NIC interface, which is where we would ideally like
timestamp packets. Accordingly, we present results in terms
of the distance from this ideal to the alternatives, namely
the latencies doc and dic, c ∈ {u, so, b}. Other combinations
of component latencies can also be studied, for example
diu−diso yields the latency between the user and so timestamp
probes on incoming packets. Note however that components
including T o

b or T i
b must be interpreted carefully, since the bpf

subsystem timestamps packet copies, not the original packets.
The resulting components can be used to compare alternative
timestamps, but not to decompose the path of the original
packet from userland to the driver in an additive way. The
same caveat hold for the outgoing so timestamp T o

so.
Figure 3 shows time series for the delays dou, d

o
so, d

o
b (left)

and diu, d
i
so, d

i
b (right). The nominal no-stress scenario NS is

given in the top row. The main observation is that, in each
direction, the bpf delays are the lowest, and enjoy the lowest
variability, followed by so timestamp (incoming only), and
then userland. The outgoing so timestamp, doso, is a special
case. It takes unexpectedly small values which can even be
negative, indicating that there is no guarantee that an outgoing
so timestamp will be taken before the original packet is

actually sent, even under minimal load. The periodicity seen in
the outgoing NS plot is, we believe, due to process scheduling
effects (its true period is much shorter than it appears in the
plotted data, which is sampled).

The remaining rows in Figure 3 give the results under the
following stress scenarios:

IO: writes and reads of files of random size to generate high
disk activity, plus memory swapping,

SC: system calls resulting in many user/kernel contexts
switches, plus memory swapping,

IP: transmission of UDP packets to stress the IP stack (but
not the driver, as we select the loopback interface as host)

The stresses were generated using the FreeBSD Foundation’s
STRESS2 toolkit [10], consisting of a set of C-programs and
configuration scripts that can be used to stress a wide range
of kernel functions. Our data is extracted from a continuous
experiment with stress pattern: NS; IO; NS; SC; NS; IP; NS,
each period being 2 hours long. Each stress period consists
of back-to-back runs of a stress program two minutes long.
The parameters for each run are partially randomised, as are
various details of the stress applied within the run. These tools
are designed for ‘destructive’ testing. We use the nominal load
levels supplied, but despite the pauses between runs and the
partial randomisation of load level which can cause stress to



drop for short periods, we observed the resulting stress levels
to be very high.

From Figure 3, the conclusions for NS continue to hold
under each of IO, SC, and IP, though the variability of course
has increased dramatically. To better capture the essence of the
24 delay series shown, Figure 4 gives boxplots summarising
the histograms arising from the timeseries, reorganised on a
per-location basis. Each boxplot shows the minimum, the iqr,
and a whisker out to the 90th percentile which in some cases
lies beyond the plot’s range.
The main observations are as follows.
Direction: outgoing has both larger delays, and higher vari-
ability. This is particularly true under IP stress, which primar-
ily targets the outgoing side.
Location: As before, bpf performs much better than
so timestamp, which in turn is much better than userland, in
each of the minimum, median, iqr, and outlier senses. As noted
earlier, a special case is the outgoing so timestamp, which,
although nominally invoked before the bpf , actually occurs
after an interval which has variability as great as for userland.

0

100

200

300

400

us
er

la
nd

Outgoing Incoming

0

50

100

so
tim

es
ta

m
p

NS IO SC IP
0

20

40

bp
f

NS IO SC IP

Fig. 4. Boxplots of Outgoing (left column) and Incoming (right column)
delay timeseries from Figure 3. Rows group delays according to probe
location, from bottom to top: bpf , so timestamp, userland. Each plot gives a
set of 4 boxplots covering each stress scenario.

Unlike userland however, there is no natural ordering with
respect to the driver (or bpf ) timestamp. In fact under all stress
scenarios (including NS) there are negative doso values. Under
IP the minimum delay is -356 µs, i.e. well after most packets
have returned! and well below the range of the plot.
Stress: for each location and each direction, SC is much
more disruptive than IO which is considerably worse than NS.
An important caveat however exists with respect to minimum
delays, which actually drop in all cases under SC and IP
compared to NS. We believe that this is due, in one form or
another, to ‘hot cache’ type phenomena. The picture is more
complex for IP, which can be even more disruptive in some
respects than SC not only for outgoing but for userland, but
leaves bpf and so timestamp almost unaffected on incoming.

During all experiments the external component gRTT of
the RTTs was monitored and found to be stable with a
constant minimum value. This independently confirms that the
behaviours we observe in the in-host delays, in particular the
shifts in minimum values, are indeed due to in-host effects.

V. APPLICATIONS

The immediate application of the results is to point to
the benefits of bpf based timestamping, the cost of userland
timestamping, and the dangers of so timestamp timestamping.
If the first of these seems clear, and the second is well known,
the third deserves further discussion.

For the timestamping of incoming packets only, for example
PTP’s Sync messages, the so timestamp, though noisier than
hardware or bpf timestamping, is a valid option. As we have
seen however, the outgoing so timestamp is highly variable,
and worse, its error cannot be bounded. More importantly
still, the fact that it does not respect causality (packets can,
and often do, leave before their timestamp is made), means it
cannot even be used to measure RTTs, and fatally, cannot be
bounded by them. This is very dangerous for timekeeping as it
excludes effective methods for the filtering of delay variability
[2]. An alternative approach could be to pair an so timestamp
on incoming with a different timestamp on outgoing. This
however leads to a higher level of in-host asymmetry, and
hence to increased error for clocks based on the timestamps.

The other main application lies in the evaluation of in-
host asymmetry Ah. Over LANs this can be a significant
component, up to 50%, of the total path asymmetry A. If
a system can be ‘asymmetry calibrated’, then the asymmetry
value used by synchronization algorithms can be adjusted from
the usual value of zero, reducing clock error by Ah/2. We now
use our measurements to calculate the in-host asymmetries
for the different timestamping locations and to compare them,
something which has not been possible in the past to any level
of precision.

More precisely, by host asymmetry here we mean the
underlying asymmetry based on the in-host delay minima
doc = mint d

o
c(t) and dic = mint d

i
c(t), namely Ah = do

c − dic
for timestamping location c, and not the variable asymmetries
experienced by individual packets. In principle, delay and
therefore asymmetry variability can be filtered out, whereas the
constant Ah is a fundamental unknown that must be measured



NS IO SC IP

−50

0

50
us

er
la

nd
[µ

s
]

NS IO SC IP

−300

−200

−100

0

so
tim

es
ta

m
p

[µ
s

]

NS IO SC IP
−20

−10

0

10

20

bp
f

[µ
s

]

Fig. 5. Asymmetry measurements and minimum RTT bounding intervals
based on the minimum delay values from Figure 4. Rows group asymmetries
according to probe location, from bottom to top: bpf , so timestamp, userland.
Each plot gives a set of 4 estimates and bounds covering each stress scenario.
The reduction in minimum delays under SC and IP is clearly seen.

directly via the delay minima. Failing this, all that one can say
is that Ah ∈ [−rc, rc], where rc = mint cRTTdr(t) = do

c+dic.
Figure 5 gives the asymmetry value and its associated

bounding interval [−rc, rc] for each of the 12 (location, stress)
combinations. For each of bpf and userland the asymmetry
is very small in absolute terms, as well as in comparison to
the conservative bounds in the userland case. Although the
userland asymmetry is actually lower than that of bpf under
both NS and IO, it increases in magnitude with stress, whereas
that of bpf is largely unaffected at around 4 µs. It would
therefore be possible to measure and remove a single load-
independent value, to reduce in-host asymmetry to around the
1 µs level. More generally, as the bpf sits much lower in the
OS, it is less likely to move as kernel versions and hardware
evolve. The ‘precise balance’ we see here at the userland level
is not likely to be seen in general.

It is clear that different combinations with mixed times-
tamping locations would yield asymmetries of much higher
magnitude, given the large differences at the delay level. Low
asymmetry requires that the two directions be well matched.

In sharp contrast to the other locations, for so timestamp
the asymmetry is large compared to the bounds under NS and
SC, does not even fall within the bounds under IO, and the
bounds themselves fail to include zero (which they should
by definition!) in the case of IP. These a priori impossible
behaviours are a direct consequence of the causality disrespect
explained above for doso.

VI. CONCLUSION

We have outlined a methodology, based on DTrace and
a sequence of incoming and outgoing test packets, which
can be used to perform timing-focussed system profiling in
the FreeBSD operating system without the need for kernel
modifications. We used it to measure accurately and in detail,
for the first time, the characteristics of the 3 timestamping
locations used by software clocks (bpf , so timestamp, user-
land), benchmarked against a 4th location (driver) that closely
approximates that used by NIC hardware timestamping.

We compared timestamp locations via the measurement of
in-host ‘delays’ relative to the driver location, both nominally
and in three stressed environments. The most important results
were i) the bpf timestamps gave by far the smallest latency and
variability, were the least influenced by stress, and had a small
and stable asymmetry, ii) for bidirectional-based timekeeping
the so timestamp is dangerous, as the timestamp on the
outgoing side is not bounded and does not respect ‘causality’.

We exploited the availability of the in-host delays to mea-
sure the corresponding in-host components of path asymmetry
for the first time. The asymmetry of both userland and bpf
was very low at just a few µs, far smaller that the RTT-
based bound, even under stress, and the value for bpf was
almost independent of stress. These values are unexpectedly
small, and we do not expect them to remains so for other
platforms such as Linux. Nonetheless, they remain a barrier
to the achievement of 1 µs precision level for software clocks
over LANs. Precise measurement allows software clocks to
correct for the in-host asymmetry and to tighten bounds on
total asymmetry.

We point out that RADclock [2] uses bpf based timestamp-
ing, whereas ptpd uses so timestamp, and ntpd timestamps in
userland. RADclock packages for Linux and FreeBSD can be
found at http://www.synclab.org/radclock/.

VII. ACKNOWLEDGEMENTS

We gratefully acknowledge the donation of the 3.7GE DAG
from Endace, and Symmetricom’s loan of the Syncserver 350.
This work was supported in part by a grant-in-aid research
grant from Symmetricom Inc.

REFERENCES

[1] D. L. Mills, Computer Network Time Synchronization: The Network Time
Protocol. Boca Raton, FL, USA: CRC Press, Inc., 2006.

[2] D. Veitch, J. Ridoux, and S. B. Korada, “Robust Synchronization
of Absolute and Difference Clocks over Networks,” IEEE/ACM
Transactions on Networking, vol. 17, no. 2, pp. 417–430, April 2009.

[3] The Precision Time protocol (PTP), ptpd. http://ptpd.sourceforge.net/.
[4] “Timekeeper software, FSMlabs,” http://www.fsmlabs.com/.
[5] Endace, “Endace Measurement Systems. DAG series PCI and PCI-X

cards,” http://www.endace.com/networkMCards.htm.
[6] B. Gregg and J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris,

Mac OS X, and FreeBSD. Prentice Hall, 2011.
[7] (2011, Sep.) “Linux Trace Toolkit: Tracing Wiki”, DTrace: Kernel

Tracing Impact. http://lttng.org/tracingwiki/index.php/DTrace#Kernel
Tracing Impact.

[8] J. Ridoux and D. Veitch, “Ten Microseconds Over LAN, for Free
(Extended),” IEEE Trans. Instrumentation and Measurement (TIM),
vol. 58, no. 6, pp. 1841–1848, June 2009.

[9] ——, “A Methodology for Clock Benchmarking,” in Tridentcom.
Orlando, FL, USA: IEEE Comp. Soc., May 21-23 2007.

[10] “STRESS2, The FreeBSD kernel test suite,” http://people.freebsd.org/
∼pho/stress/index.html.


