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Introduction

Introduction

Present some new features and recent work on RADclock
e Robust Absolute and Difference clock

e Software clock that relies on a feed-forward paradigm

RADclock aims at being an “ideal” software clock, capable to:
e Use any synchronization protocol (IEEE 1588, NTP)
e Use software timestamps but be reliable and accurate
e Use NIC hardware timestamps when available
e Be robust to latency variability of network and OS

e Be robust to high system load (consistent performance)
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Motivation

Previous work
e ISPCS 2008, RADclock (NTP) vs. ptpd (IEEE 1588) perfs
e Demonstrated impact of network delay on clock performance

e Advocated for a robust synchronization algorithm to filter
noise

Purpose of this talk
e RADclock and ptpd have improved, work should be revisited
e Increasing hardware timestamping support on commodity NICs

e Compare to commercial solution (TimeKeeper by FSMLabs)
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Comparing Contenders

ntpd | ptpd | TimeKeeper | RADclock

Open Source v v X v
Linux v v v v
*BSD v v X v
Windows v X X X
NTP v X v v
IEEE 1588 X v v

S/W timestamps v v v v
H/W timestamps X X* v

e Not possible to compare all solutions across all dimensions
e Present most interesting comparisons only (using IEEE 1588)
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RADclock |IEEE 1588 Support
Early Support / Proof of Concept

e Runs as slave only (reasonable for software clock)

e End-To-End only

¢ No support for Announce, Signalling or Management Message
Use 1588 Packets as Needed by Feed-Forward Algorithm

MASTER SLAVE

t1 \SYN e DELAY_REQ and DELAY_RESP only
\\\‘FOLLOW\CUP\\‘ o Us.e bi-directional paradigm, for
e reliable RTT based filtering
wma— | e Ignore SYNC and FOLLOW_UP

e Much less input data than ptpd or

o TimeKeeper
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Comparison Methodology
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e DAG card provides the hardware time reference

e Compare two clocks at a time, each against DAG timestamps
e Clocks timestamp UDP test packets (almost) simultaneously
e BPF/libpcap timestamps if we are conducting a software

timestamping experiment
e Hardware timestamps if available
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Implementation

Clock Input

Clocks Share:

Host load and latency
Network conditions

Time server quality

... but attain timestamps from different locations

ntpd SW: Userland

ptpd SW: SO_TIMESTAMP (socket layer)
TimeKeeper HW: NIC timestamps converted by kernel
TimeKeeper SW: 777

RADclock SW: BPF/libpcap timestamps

RADclock HW: NIC oscillator RAW counter
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RADclock Network Driver NIC
Stack
)¢
———— DELAY_REQ |E >
<——— DELAY_RESP
[ *
I

e SOCKETF}
We modified the Intel i350 NIC driver (Linux)

e Export raw i350 time counter from the NIC up to userland

e This hardware value can be read from userland via the Linux

socket API
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Experiments

Hardware Packet
Timestamping

Control Host UDP test

UDP test packets Client

packets Server

e Clocks converged for 24 hours then 2 hour stress period
e Stress period was a large data transfer across 100 Mbps hub

e Transfer rate capped at 45Mbps
e RTT of timing packets increases with large outliers

NTP | PTP SW | PTP HW

90th pretile [ps ] 480 340 240
90th pctile stress [ms | 10.7 10.8 0.40
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RADclock (NTP) vs. timekeeper (NTP) on Linux

1073

timekeeper

I Med: -86.78
IQR: 10.49

e RADclock’s median error is consistent with the network

200 300
Time [min]

asymmetry seen by the DAG

o timekeeper affected by stress, but quickly recovers
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RADclock (NTP) vs. ptpd (1588) on Linux
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Introduction What's New Implementation Results
RADclock (NTP) vs. ptpd (1588) on BSD
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e ptpd keeps accumulating error after stress period

e RADclock hardly affected by stress
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RADclock (1588) vs. ptpd (1588) on Linux
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e RADclock comparable to ptpd during non-stressed periods
e Both affected by stress, RADclock discards input
(implementation problem)
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RADclock (1588, hardware) vs. timekeeper (1588,
hardware) on Linux
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o timekeeper outperforms RADclock during non-stress period
e timekeeper affected by stress (IQR from 2 ps to 495 ps)
e Oscillations of RADclock due to server-room air conditioning

and feed-forward algorithm sliding windows
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Conclusion

e We investigated other client software solutions and compared
them against RADclock

o RADclock shows high stability during periods of stress

http://www.synclab.org/radclock/
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