Introduction What's New Implementation Results Conclusion

An IEEE-1588 Compatible RADclock

Matthew Davis!, Benjamin Villain?, Julien Ridoux!,
Anne-Cécile Orgerie3, Darryl Veitch!

! Electrical & Electronic Engineering Dpt, The University of Melbourne, Australia
{matt, julien}@synclab.org, dveitch@unimelb.edu.au

2 Université de Nantes, IRCCyN UMR CNRS 6597, Nantes, France
benjamin.villain@gmail.com

3 Ecole Normale Supérieure, Lyon, France
annececile.orgerie@ens-lyon.fr

This work was supported in part by a research grant from Symmetricom Inc.

THE UNIVERSITY OF
MELBOURNE

AV,
& SYNC

Introduction

Introduction

Present some new features and recent work on RADclock
e Robust Absolute and Difference clock

e Software clock that relies on a feed-forward paradigm

RADclock aims at being an “ideal” software clock, capable to:
e Use any synchronization protocol (IEEE 1588, NTP)
e Use software timestamps but be reliable and accurate
e Use NIC hardware timestamps when available
e Be robust to latency variability of network and OS

e Be robust to high system load (consistent performance)

Introduction

Motivation

Previous work
e ISPCS 2008, RADclock (NTP) vs. ptpd (IEEE 1588) perfs
e Demonstrated impact of network delay on clock performance

e Advocated for a robust synchronization algorithm to filter
noise

Purpose of this talk
e RADclock and ptpd have improved, work should be revisited
e Increasing hardware timestamping support on commodity NICs

e Compare to commercial solution (TimeKeeper by FSMLabs)

15

Introduction

Comparing Contenders

ntpd | ptpd | TimeKeeper | RADclock

Open Source v v X v
Linux v v v v
*BSD v v X v
Windows v X X X
NTP v X v v
IEEE 1588 X v v

S/W timestamps v v v v
H/W timestamps X X* v

e Not possible to compare all solutions across all dimensions
e Present most interesting comparisons only (using IEEE 1588)

15

Introduction What's New Implementation Results Conclusion

RADclock |IEEE 1588 Support
Early Support / Proof of Concept

e Runs as slave only (reasonable for software clock)

e End-To-End only

¢ No support for Announce, Signalling or Management Message
Use 1588 Packets as Needed by Feed-Forward Algorithm

MASTER SLAVE

t1 \SYN e DELAY_REQ and DELAY_RESP only
\\\‘FOLLOW\CUP\\‘ o Us.e bi-directional paradigm, for
e reliable RTT based filtering
wma— | e Ignore SYNC and FOLLOW_UP

e Much less input data than ptpd or

o TimeKeeper

Introduction What's New Implementation Results Conclusion

Comparison Methodology

Internal Monitor
External Monitor

? ‘ == Network Synchronisation =~ = = = UDP flow y Timestamping

Host :
Rlomie DAG| |UnixPC GPS
R Card Receiver
u
0 - H
i Time Server

= =

0

coococoomooocoooo)pProocooo

]

e DAG card provides the hardware time reference

e Compare two clocks at a time, each against DAG timestamps
e Clocks timestamp UDP test packets (almost) simultaneously
e BPF/libpcap timestamps if we are conducting a software

timestamping experiment
e Hardware timestamps if available

6/15

Implementation

Clock Input

Clocks Share:

Host load and latency
Network conditions

Time server quality

... but attain timestamps from different locations

ntpd SW: Userland

ptpd SW: SO_TIMESTAMP (socket layer)
TimeKeeper HW: NIC timestamps converted by kernel
TimeKeeper SW: 777

RADclock SW: BPF/libpcap timestamps

RADclock HW: NIC oscillator RAW counter

15

Introduction

Ww 4—0‘ SOCKET ERROR QUEUE ’

What's New

Implementation

RADclock H/W Timestamping

Results

Conclusion

RADclock Network Driver NIC
Stack
)¢
———— DELAY_REQ |E >
<——— DELAY_RESP
[*
I

e SOCKETF}
We modified the Intel i350 NIC driver (Linux)

e Export raw i350 time counter from the NIC up to userland

e This hardware value can be read from userland via the Linux

socket API

Introduction What's New Implementation Results Conclusion

Experiments

Hardware Packet
Timestamping

Control Host UDP test

UDP test packets Client

packets Server

e Clocks converged for 24 hours then 2 hour stress period
e Stress period was a large data transfer across 100 Mbps hub

e Transfer rate capped at 45Mbps
e RTT of timing packets increases with large outliers

NTP | PTP SW | PTP HW

90th pretile [ps] 480 340 240
90th pctile stress [ms | 10.7 10.8 0.40

15

Introduction

Clock Error [us]

|
IS
S

|
o
<)

|
©
=}

—100

Clock Error [us]

'
o
S

N
o
S

o
S

o

What's New

Implementation

Results

Conclusion

RADclock (NTP) vs. timekeeper (NTP) on Linux

1073

timekeeper

I Med: -86.78
IQR: 10.49

e RADclock’s median error is consistent with the network

200 300
Time [min]

asymmetry seen by the DAG

o timekeeper affected by stress, but quickly recovers

—100
[ps]

radclock
: 0
0 100 200 300 —100 —90 —80 —70
Time [min] [ps]
1073
—
timekeeper : ‘ N 10 |-{ Med: -87.74
[radclock | ! IQR: 12.87
[l 1\ 51
I I
;
I | | T WY 0
500 —150

0
—100 —80 —60 —40

[ws]

Med: —‘75.10‘

IQR: 256.84 ||

200 400 600
[ps]

10/15

Introduction

Clock Error [us]

What's New

Implementation

Results Conclusion

RADclock (NTP) vs. ptpd (1588) on Linux

1073 .10~3
300 ‘ T T 2 10
- tpd % Med: - Med:
20 fa:clock 109.67 1o 230.55 [
100 N IQR: 10.25 IQR: 31.23
5
0
—100 0 o
0 100 200 300 —120—110—100 —90 200 250 300
Time [min] [ms] [ps]
1073
— 2,000 —
= ptpd ‘ 10 [Med: -
5 1,000 | 4 108.96
L%' radclock :l l: IQR: 10.97
~ 0 —_—m 510
[¥]
kel
O —1,000 ! ! 0
0 5 10 = 186-166-146-120-100
Time [hour] [ws]
1073
80 = I\}/Ied: ‘
e RADclock remains stable|1971.06 he network stress
40 |- IQR: [l . i
e ptpd demonstrates a,gont 17178-60 evel shift (2ms) during the
H | | |
stress period 21000 0 1,000 2,000
[ws]
11 /15

Conclusion

Introduction What's New Implementation Results
RADclock (NTP) vs. ptpd (1588) on BSD
1073 1073
- — : [f ——]
3 150 j ptpd 30 Med:
g 100 - radclock 20 126.60
0 50l IQR: 38.62
< 10
L L
[v] ol A
0 100 200 300 —40—-35—-30—-25 0 50 100 150
Time [min] [ps] [ps]
-10* 1073 1073
T ‘ —
= 6l ptpd 15 H Med: -31.95 200 |- Med: [|
5 IQR: 8.58 151.16
2 4 radclock 10 ;
I IQR:
= 2l 51 2001 |s5401.77 ||
8
Yoo : ol \
0 100 200 300 —100 —50 2 4 6
Time [min] [ps] [ws] 104

e ptpd keeps accumulating error after stress period

e RADclock hardly affected by stress

15

Introduction What's New Implementation Results Conclusion

RADclock (1588) vs. ptpd (1588) on Linux

.10—3
- —50 r 0
= ptpd Med: -
5 147.82
2 ool
5 —100 radclock I 1QR: 6.91
X "
8 ﬁ\/‘/\,/\\/\/\,_/v\/\/\/x/_y\\/\vv\\/\/\/\‘ F
S —150 ‘ o o
0 50 100 150 —150 —140 —130 —80 —70 —60
Time [min] [ps] [ps]
103 1073
o
= 6,000 ptpd | i Med: - ol [Med:
5 radelock ‘ 164.86 6705.02
& 4000 | . IQR: 45.34 IQR:
< 2,000 [w/ I B 5 2072.81
<} [I
] 0) | n L | | 0 0
0 2 4 6 8 10 —250 —200 —150 2,000 4,000 6,000
Time [hour] [ms] [ms]

e RADclock comparable to ptpd during non-stressed periods
e Both affected by stress, RADclock discards input
(implementation problem)

13 /15

Introduction What's New Implementation Results Conclusion

RADclock (1588, hardware) vs. timekeeper (1588,
hardware) on Linux

1073
o 0]
=S timekeeper Med: -95.37 80 (— Med: -1.67
5 radelock IQR: 9.06 6o ||l 1QR: 2.15
g 50 N 40 H 8
3
: 2]
O —100 | | B 0 0 | HH [FRTITII
1,180 1,200 1,220 1,240 —100 —95 —90 -2 0 2 4
Time [min] [ps] [ps]
1073 1073
= 5007 = r ———
2 timekeeper) Med: -95.61 40 Med: -
5 0 radclock IQR: 7.39 111.16
3 IQR: 494.36
w | 20 |- L
L 500 ‘ ! 0
3 | \ L
O —1,000 - ! |1 ! | L1 0 oL il |
1,200 1,250 1,300 1,350 1,400 —105-100—95 —90 —85 —1,000-500 0 500
Time [min] [ps] [ps]

o timekeeper outperforms RADclock during non-stress period
e timekeeper affected by stress (IQR from 2 ps to 495 ps)
e Oscillations of RADclock due to server-room air conditioning

and feed-forward algorithm sliding windows
14 /15

Conclusion

e We investigated other client software solutions and compared
them against RADclock

o RADclock shows high stability during periods of stress

http://www.synclab.org/radclock/

15/15

http://www.synclab.org/radclock/

	Introduction
	What's New
	Implementation
	Results
	Conclusion

