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Abstract—The RADclock is an open source software clock that
is highly robust to latency variability. A limitation up to now
has been that it could only be used with NTP servers, and
was unable to take advantage of IEEE-1588 enabled devices,
including PTP masters and NICs with hardware timestamping.
This paper benchmarks an early implementation of PTP support
for RADclock, with and without hardware timestamping. We
evaluate performance under both nominal and stressed conditions
against alternative software clients ptpd and timekeeper and find
that it compares very well.

Index Terms—software clocks, RADclock, ptpd, timekeeper,
IEEE 1588, latency.

I. INTRODUCTION

The availability of a versatile and reliable software clock
that is open source is highly desirable. Ideally, such a solution
should be able to synchronise to both NTP servers and PTP
masters, and be capable of exploiting hardware timestamps
when available to achieve higher accuracy, but be accurate and
reliable when using software timestamps. It must be robust to
the high latency variability induced by network and operating
system stress, and be available on major platforms.

No available solution fulfils all of the above needs. By
far the most widely deployed is ntpd [1], which of course
is open source and ‘speaks’ NTP, but it does not support
PTP, and it can become unstable under latency stress [2].
The open source ptpd [3] speaks PTP and is available on a
number of platforms (FreeBSD, NetBSD, Linux, cClinux), but
it does not speak NTP, does not support the use of hardware
(i.e. NIC based) timestamping (see however [4] for some early
work in this direction, and also [5]) and can also be unstable
under stress [6], [2], [4]. An alternative software PTP client
is timekeeper [7]. It is available for Linux, speaks both NTP
and PTP, and uses hardware timestamps, but is a commercial
solution, and its performance under software timestamping is
unknown. Finally, our own open source solution, RADclock
[8], speaks NTP and is available on FreeBSD (RADclock’s
kernel components will be in FreeBSD from version 10.0.)
and Linux, but does not speak PTP. It is highly stable under
stress, but has not supported the use of hardware timestamps.

This paper trials an early version of support for IEEE-
1588v2 within RADclock, including limited support for hard-
ware (HW) in addition to software (SW) timestamping of PTP
packets. The hardware capability is built on top of the existing
Linux support (see work of Cochran et. al. [9], [10]). With
these extensions RADclock has the ability to operate, at least

to some extent, across each of the (protocol, platform, times-
tamping) dimensions outlined above. By comparing against
alternative implementations across a number of points in this
space, under both lightly loaded and stressed scenarios, we
show RADclock’s potential to fulfil the role as an accurate and
robust ‘universal’ synchronisation solution which is also open
source. Along the way we provide interesting benchmarking of
other solutions in various environments, including timekeeper
as a PTP and NTP client with software timestamps. We con-
sider the protocols (NTP, PTP), the platforms (FreeBSD 9.0,
Linux 3.2.2), and the clients (ptpd2, timekeeper, RADclock).
We do not benchmark ntpd since PTP is our main focus,
and because it has been done before. As the servo designs
of ptpd and RADclock have been described elsewhere, and
timekeeper’s is proprietary, we omit them. We restrict to
benchmarking over a LAN, since ptpd and timekeeper are not
designed for the wider Internet.

The PTP support for RADclock is preliminary in several
respects. First, it is not a full IEEE-1588v2 implementation.
It is restricted to master-slave mode and supports only what
is needed to allow RADclock to obtain the timestamps it
needs from a given master. Second, our implementation makes
no use of the Sync messages multicast from the master.
Instead, timestamps are collected from periodic (Delay Req,
Delay Resp) message pairs to recreate a bidirectional ex-
change paradigm suited to RADclock’s existing algorithm [8],
which is used without change. Other PTP implementations
make use of both kinds of message in (increasingly) roughly
equal proportions. In future work we will extend RADclock’s
feed-forward approach to work with uni-directional data in
order to benefit from Sync messages, and in particular, from
the low latency of the two-step clock’s Follow Up timestamps.

Despite the above limitations, our implementation is suffi-
cient to allow successful synchronisation to a PTP master with
the same high robustness established in previous work [8]. We
find that under nominal conditions the accuracy compares well
with that of the other solutions, even without the benefit of the
Follow Up timestamps, and very well when HW timestamps
are used. Under stressed conditions, we find RADclock to be
far more robust, in particular when using SW timestamps.

The paper is structured as follows. Section II provides
needed background on our experimental testbed and our 1588
implementation. Section III presents the results, a set of com-
parisons of RADclock performance versus that of other clients
covering the key dimensions. We conclude in Section IV.



II. BACKGROUND

In this section we describe our test hardware and software,
RADclock’s PTP support, hardware and software timestamp-
ing, and our measurement methodology.

A. Testbed

Experiments were conducted with two test hosts with
identical hardware, dingo and dugong, each 3.0GHz Xeon
Quad Cores, running FreeBSD 9.0 and Linux 3.2.2 (Ubuntu
12.04 LTS) respectively. The integrated NICs were Broadcom
Corporation’s NetXtreme II BCM5716 Gig-Ethernet (rev 20).

In each host the PTP-capable Intel I350 Ethernet cards were
installed, together with the latest igb driver (version 3.3.6)
provided by the Linux 3.2.2 kernel. On FreeBSD hardware
timestamping was not supported, and we used the card as
a normal NIC only. On Linux hardware timestamping was
supported, however some driver modifications were needed to
support RADclock’s requirements, as described below.

As an external hardware reference we used a 3.7GE DAG
card [11] to timestamp packets passing in and out of the
host, via a 100Mbps Ethernet hub as tap. The PPS input to
the DAG was provided by a PRS-10 rubidium atomic clock,
synchronised to a roof mounted Trimble Acutime Gold GPS
receiver, resulting in a final precision around 40 ns off UTC.

We use two reference time servers. The first is a Sym-
metricom SyncServer 350 (with roof mounted GPS antenna),
used as both an NTP stratum-1 server and a PTP grandmaster
(master-slave mode). The second is a PC based stratum-1 NTP
server, running ntpd with PPS from the atomic clock as input.

Network configuration: the NIC is connected to the tap hub,
which in turn is connected to the DAG and a commodity
Gigabit Ethernet switch, off which hangs the reference time
servers. The minimum host 7→server network latency, as mea-
sured between the SyncServer 350 (using the Delay Resp and
Follow Up event timestamps) and the DAG, is only 10 µs from
the host to the server (outgoing direction), and 18 µs in the
incoming direction.

B. RADclock PTP support

The RADclock synchronisation algorithms are currently
based on a client-initiated bidirectional timestamp exchange
paradigm, as commonly used by NTP clients. Here a timing
message, initiated by the client, is timestamped by the client
as it leaves (Ta), by the server as it arrives (Tb) and then
leaves (Te), and finally at the client as it returns (Tf), resulting
in a four-tuple stamp: {Ta, Tb, Te, Tf} available at the client,
which forms the basic unit of input to the algorithm. The PTP
message types were not explicitly designed with this paradigm
in mind, however they can be used to support it as follows,
through using the Delay Req and Delay Resp messages.
Ta: the host client generates and timestamps Delay Req.
Tb: the master timestamps the arrival of Delay Req. Being
an event message, the timestamp is accurate, and is returned
to the client via the Delay Resp message.
Te: we use Delay Resp as the returning side of the bidirec-
tional exchange. As a general message, it is not timestamped
at the master. Instead we set Te = Tb + d→, where d→ > 0 is

a constant representing the minimum time taken to generate
and then send Delay Resp.
Tf : the client timestamps the arrival of Delay Resp.

Our use of a virtual surrogate for Te requires further
discussion. First, note that in the case of NTP servers where
Te and therefore d→ are known, we find that d→ is the range
≈ [15, 100] µs depending on server, and on a given server
has low variability (interquartile range (iqr) of 5-20 µs). This
typically only accounts for a fraction of the in-server latency,
for example in PC’s, Te is a userland software timestamp (a
one-step clock paradigm) and so the time spent in the kernel is
not included. Since in addition the RADclock algorithm does
not use d→ = Te − Tb for filtering nor does it subtract it out
from round-trip-times (RTT), its replacement by a constant has
very little impact on the synchronisation algorithm’s behaviour
compared to the usual case with well behaved NTP servers.
Effectively, part of the in-server latency is simply reallocated
(implicitly) to the network return path to the client. The only
real impact is that the path asymmetry A (the difference in the
minimum one-way delays) will be smaller than it would have
been, as d→ will underestimate the true value, which adds
a constant error to the clock (path asymmetry of A imparts
a constant error of A/2 on a clock). By using the DAG to
accurately measure the asymmetry component residing in the
network plus server, this effect can be evaluated in our testbed.

In this paper we set d→ = 5 µs, a very conservative value
well under what we have observed in NTP servers of various
types. Crucially, it underestimates the true minimum time to
generate and send the Delay Resp, and so will not generate a
causality violation at the client.

The actual timestamping of PTP packets by RADclock is
achieved by RADclock’s existing modified bpf mechanism (see
below). However, modifications to RADclock’s ‘network layer’
were needed to support the above bidirectional scheme, in
particular since the use of different port numbers on the in-
coming and outgoing directions, and multicasting, adds greater
complexity compared to NTP. A reliable matching mechanism
for timestamps from the two directions was written, based on
a synchronizing thread taking independent timestamp queues
maintained by per-direction threads, and safely merging them
into a time-ordered queue of valid four-tuple stamps, suitable
as input to the algorithm itself. The scheme is robust to
simultaneously active clients, multiple PTP slaves and masters
on the network, and lost, duplicated and reordered messages.

As mentioned earlier no modifications to RADclock’s syn-
chronisation algorithm were needed. Some parameter values
however were altered to match a typical PTP environment.
With a period of the order of 1[sec] for Delay Req messages,
we set the offset win [8] parameter controlling drift estimation
to 256[sec] compared to the more usual 1024[sec] used with
periods of 16[sec] or more.

C. Timestamping Methodology
Software timestamping is the only option available for

ptpd, and traditionally for RADclock (and ntpd). Hardware
timestamping is possible with timekeeper on certain hardware
under Linux, and now under RADclock for the Intel I350, also
under Linux.



RADclock SW: Under both FreeBSD and Linux, RADclock
timestamps the UDP packets carrying the Delay Req and
Delay Resp messages, or NTP packets, via the kernel’s bpf
mechanism. These timestamps are ‘raw’, that is hardware
counter readings (here of the TSC register), made off copies
of the associated packets. They enjoy low latency under each
platform, although the implementations and detailed charac-
teristics are quite different. Kernel patches enable RADclock
to access these raw timestamps from userland.
RADclock HW: The igb driver for the Intel I350 NIC can
access raw counter timestamps of PTP packets from the card.
Under Linux we modify the driver to maintain a 64 bit
FFcounter, a feed-forward compatible version of the counter
required by RADclock, namely one which is cumulative and
does not roll over [12]. This FFcounter nominally counts
nanoseconds since initialisation of the NIC, but is freerunning,
and has a resolution of 8 ns. The RADclock is based on the
driver’s FFcounter only, there is no conversion or interpolation
to the TSC or any other counter.

On the incoming side, RADclock’s network layer gains
access to the FFcounter timestamps of PTP packets from
libpcap via bpf , through a new member we add to the skbuff
(the datastructure that carries all information about a packet).

On the outgoing side RADclock is the owner of the appli-
cation layer socket sending the Delay Req, and so can pass
a line of communication (a pointer) to itself to the driver via
the skbuff. We modify the driver so that just before passing
the Delay Req to the NIC the driver reads the NIC’s counter
and forms an FFcounter timestamp, then immediately accesses
the errorqueue of the socket and places the timestamp there
(the errorqueue is an existing socket mechanism that bypasses
the networking layer, normally used to record error events).
It is very important to note that this design is ‘causality-
preserving’: the timestamp is guaranteed to be made before
the packet is sent.

ptpd SW: Under both FreeBSD and Linux ptpd uses the
so timestamp mechanism, which gives access, when the
so timestamp socket option is set, to timestamps from the
platform’s system clock via a received message system call
(recvmsg). For outgoing packets a so timestamp is obtained
via a copy sent back up the IP stack through the multicast
loopback interface. If this copy is lost, a userland system clock
timestamp is used instead. The system clock is disciplined by
ptpd itself. We use the latest version of ptpd2.

timekeeper HW: Typically timekeeper is used with NICs
which support hardware timestamping. Although the source
code is unavailable to us, we believe that NIC counter times-
tamps are obtained from the Intel I350 via the driver in much
the same way as described above for RADclock. They are
then used to both read and discipline the system clock which
produces the final packet timestamps.
timekeeper SW: To successfully use timekeeper based on
SW timestamps, we found it necessary to ensure that HW
timestamping was unavailable. To convince the kernel and
timekeeper unequivocally of this fact, we bypassed the Intel
I350 NIC and used the Broadcom NIC. As the software is
proprietary, under SW timestamping we are not certain if the

so timestamp or userland timestamping locations are used, or
some other approach. Either way, timekeeper disciplines the
system clock and uses it for timestamping.

D. Experimental Methodology
Our methodology for fair clock comparison derives from

that of previous work, notably [13]. Briefly, it is based on a
series of UDP test packets sent from the host to an echo server
on the LAN and back, as a set of triggers for timestamps made
by multiple clocks within the host in both the incoming and
outgoing directions, and external to it at the DAG card. To
this end all packets are timestamped, not only timing packets.
Client clock errors are measured by comparing with DAG.

Results will be presented only for the direction where they
suffer the least noise from operating system latency. The best
direction is a function of the platform selected and the nature
(SW or HW) of the timestamps. Under Linux, polling of the
NIC on the incoming side (the default behaviour), while good
for throughput performance, is very damaging for the latency
noise of SW timestamps. We accordingly compare based on
the outgoing side. Under FreeBSD the problem is not so severe
but again the latency noise is lower on the outgoing side. With
HW timestamping the incoming side is preferable, and each
clock can access exactly the same event timestamped with the
same hardware counter – a perfect shared-event comparison.

Side by side comparison of clocks is ideal both for fairness
and to help in interpreting the underlying causes of observed
behaviour. Various compatibility issues meant that it was not
possible to compare 3 or more in this way. Comparisons across
different experiments are possible, but due care is needed
as important parameters which impact performance such as
server, OS, or NIC typically vary.

For a nominally fair comparison in terms of the volume of
timestamp data input to each client, we equalise the polling
periods as follows.
ptpd: 1 Sync message per second;
RADclock: 1 Delay Req or NTP packet per second;
timekeeper: 1 Sync or NTP per second nominally. We
observed that 3 NTP packets were actually sent.

Note that RADclock is naturally disadvantaged in that each
of ptpd and timekeeper also benefit from Delay Req messages.

III. RESULTS

In each experiment we first collect data under light load (of
both machine and network), then 2 to 4 hours later network
stress is added during a 2 hour period, before reverting. Stress
is applied through using scp to transfer large files (rate capped
at 45Mbps) across the hub, resulting in higher delay variability
for timing packets. The 90th percentiles of RTT increased
from: NTP: 0.14 → 10.7ms, PTP SW: 0.34 → 10.8ms,
PTP HW: 0.24 → 0.40ms. The test host is not the target of
the transfer so the host itself is not stressed, but each packet
is filtered and timestamped by the NIC, which may stress
its timestamping path. We use both the Broadcom and Intel
NIC. Under BSD polling is disabled by default, and the Intel
has good latency characteristics, whereas the Broadcom has
considerable noise. Under Linux polling is in effect and both
NICs have nasty behaviour, which impacts SW timestamping.
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Fig. 1. RADclock (NTP) vs. timekeeper (NTP) on Linux. NTP server: PC stratum-1. NIC: Broadcom. Timestamping: SW. Top row: timeseries and histograms
from initial unstressed period. Bottom: timeseries for full experiment, histograms from stressed portion only. Vertical lines mark the stress period.
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Fig. 2. RADclock (NTP) vs. ptpd (1588) on Linux. NTP server: PC stratum-1. PTP master: SyncServer 350. NIC: Broadcom. Timestamping: SW.

A. RADclock Speaks NTP

In this section we perform comparisons where RADclock is
acting as an NTP client.

We begin by comparing RADclock and timekeeper (neces-
sarily on Linux), each synchronizing to the PC based stratum-1
NTP server. Figure 1 shows the resulting timeseries of clock
errors and associated histograms. The top row focuses over the
nominal period at the beginning of the experiment only. In the
bottom row, the timeseries shows the entire experiment before,
during (between the vertical lines) and after the stress period,
but the histograms are for the stress period only. This format is
used in all the results below. We see that timekeeper has higher

error variability (iqr) under nominal conditions than RADclock,
and was much more affected by stress. The RADclock median
error is consistent with the asymmetry seen by DAG.

Still on Linux, in Figure 2 we compare the performance
of ptpd (necessarily as a PTP client with SW timestamps),
using the SyncServer 350 as a master, against RADclock in the
same configuration as before. When the stress period begins
we see a dramatic level shift in ptpd’s error of 2ms after some
oscillations, and even after it is over ptpd does not recover to
its previous level. In contrast RADclock is only mildly affected,
with almost identical iqr, and recovers seamlessly. Nominal
median errors reflect the different timestamping locations.
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Fig. 3. RADclock (NTP) vs. ptpd (1588) on BSD. NTP server: PC stratum-1. PTP master: SyncServer 350. NIC: Intel. Timestamping: SW.
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Fig. 4. RADclock (1588) vs. ptpd (1588) on Linux. PTP master: SyncServer 350. NIC: Broadcom. Timestamping: SW.

Again with ptpd, with the same master and with RADclock
again in the same configuration, but now on FreeBSD, Figure 3
shows a jump in ptpd error well beyond the millisecond range
in response to the stress, and quite complex behaviour even
before it. Afterward an instability sets in and error grows
linearly. As on Linux RADclock is largely unaffected.

The performance of RADclock as an NTP client seen here is
consistent with earlier published work, including comparisons
with ptpd [6]. Re-examining it here is worthwhile because the
specific comparisons are new, ptpd has undergone consider-
able development in the interim, and the comparisons with
timekeeper have not been made before. In the next section we
test RADclock under entirely new conditions.

B. RADclock Speaks 1588 with SW timestamping

We now perform a comparison where RADclock is acting
as a 1588 client with SW timestamping, with the SyncServer
350 as master.

Figure 4 shows that the RADclock PTP implementation is
working, and that its performance is comparable in iqr to that
of ptpd under nominal conditions. The difference in median
error can be attributed to the different timestamping locations
together with the additional asymmetry associated with our
use of Delay Resp as described in Section II-B. Under stress
both clocks are significantly affected, but ptpd much more so,
with errors growing to 6ms, and a failure to recover when
nominal conditions returned.
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Fig. 5. RADclock (1588, hardware) vs. timekeeper (1588, hardware) on Linux. PTP master: SyncServer 350. NIC: Broadcom. Timestamping: HW.

C. RADclock Speaks 1588 with HW timestamping
Finally, we perform a comparison (necessarily against time-

keeper on Linux and and the Intel I350 NIC) where RADclock
is acting as a 1588 client with HW timestamping. Note here
each client uses precisely the same hardware timestamps for
the incoming UDP test packets, so the following comparison
achieves perfect ‘simultaneous reading’ of the two clocks.

Figure 5 shows that the RADclock PTP implementation with
hardware timestamping is working. Under nominal conditions,
at 9 µs of iqr it is performing less well than timekeeper’s 2 µs,
which is not surprising given its lack of use of Follow Up mes-
sages and other disadvantages (see end Section II-D). Under
stress its performance is essentially unaffected, whereas time-
keeper suffers errors of the order of 1ms. The −95 µs median
error of RADclock corresponds closely to the network+server
asymmetry of −160 µs seen by DAG (−160/2 = −80).

IV. CONCLUSION

This paper has two aims, to describe and benchmark a first
implementation of IEEE 1588 for RADclock, and to show
how, via a set of comparisons against other clients popu-
lating the dimensions of protocol (PTP, NTP), timestamping
(hardware, software), platform (Linux, FreeBSD), and latency
environment (nominal, stressed), that RADclock is capable of
performing respectably in all cases. We showed in particular
that its high latency robustness carries over as expected (since
the algorithm is unchanged) from NTP to PTP, despite the
inadequacies of the current PTP implementation, in particular
the fact that Sync messages and the benefits of the PTP two-
step clock (the Follow Up message) are not as yet exploited.

The most important result was that the robustness of RAD-
clock was seen in all cases to be much higher than that of the
other clients, even timekeeper using hardware timestamping,
while its performance under nominal conditions was generally
comparable if not better.

For future work, we will develop feed-forward compatible
approaches to exploiting the two-step clock.

RADclock packages for Linux and FreeBSD, software and
papers, can be found at http://www.synclab.org/radclock/.
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