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Abstract—The status quo for timestamping in PCs is ntpd,
which under general conditions is accurate to 1 ms at best.
For precision applications this is inadequate, but it is a low
cost solution which suits many generic applications. IEEE-
1588 provides mechanisms for sub-microsecond accuracy, but
to achieve this more hardware is needed. We have developed the
TSCclock, which gives performance between these two, around
10 microseconds on LAN, sub millisecond beyond, but using
commodity hardware. We benchmark the TSCclock to show
its potential as an inexpensive yet accurate software clock,
which could be used with IEEE-1588 for LANs, but has wider
applicability as a replacement to ntpd.

I. INTRODUCTION

Clock performance, like any system, is subject to tradeoffs
of cost and ease of use. Consider the status quo for software
clocks in PCs, the ntpd daemon [1], which is used to syn-
chronize system software clocks via a time server hierarchy
across networks. It is widely recognised that ntpd is inadequate
for precision timekeeping, being limited to around 1 ms at
best (see Figure 3 for an example) in typical configurations.
However, for many applications this is sufficient, and it
does enable a time server to be inexpensively accessed over
networks ranging from LANs to the Internet.

Over LANs, IEEE-1588 implementations provide for far
more precise synchronization, at the microsecond level to
well below if hardware support is provided, such as when
a hardware clock is embedded into a Network Interface Card
(NIC). This large improvement in terms of clock performance
brings with it two main constraints. First, the additional
hardware comes at a financial cost, and makes legacy hardware
incompatible with IEEE-1588. Second, since the IEEE-1588
protocol must be implementable in hardware, its design has to
remain relatively simple. This fundamental constraint restricts
the usage of the IEEE-1588 protocol to LAN islands.

There is a wide gap between the quality and constraints of
these two timing solutions, ntpd and hardware based IEEE-
15881. This leaves open the prospect for a solution which lies
in between that would be reliable, able to provide synchroniza-
tion within or across LANs, whilst remaining inexpensive and
compatible with legacy hardware. Over the last few years ([3],
[4], [5], [6], [7]) we have developed a solution which takes
this middle ground: exploiting the relatively high stability of
commodity hardware to provide a robust clock with accuracy

1Software implementations exist [2], however, the very high accuracies
commonly quoted for IEEE-1588 refer to hardware implementations.

well above that of the ntpd solution, whilst retaining the low
cost and ease of use of network based synchronization. The
TSCclock has as its hardware basis the TSC register, avail-
able in common architectures, which counts CPU cycles. Its
synchronization algorithms, based on a client-server paradigm,
are effective in filtering out delay jitter from network elements
and the host system, and use selective kernel modifications to
dramatically improve timestamping performance at zero dollar
cost.

To support the first release of the TSCclock over Linux
and FreeBSD systems, in this paper we perform a careful
benchmarking study of the TSCclock over LANs. Using weeks
of live data, our results show performance over Ethernet LANs
to be around 10µs, a noise level essentially set by the jitter
inherent in the multi-tasking operating system. Whilst not
being able to compete with more hardware oriented solutions
over LAN, this raising of the bar by an order of magnitude
nonetheless opens up numerous possibilities for applications
where cost is a factor. We illustrate the potential of the
algorithm to go beyond the LAN setting with only a modest
performance penalty.

This paper expands on earlier work presented at ISPCS 2007
in Vienna [8]. In particular sections IV-B, IV-C contain new
results using new hardware and an improved methodology.

II. THE TSCCLOCK

The TSCclock [3], [4], [7] leverages the fairly high stabil-
ity of commodity oscillator hardware, specifically the CPU
oscillator, whose cycles are conveniently counted and readily
accessible via the TSC register in common PC architectures.
Contrary to the ntpd based software, the TSCclock does not
actively vary its rate to track drift in a feedback loop [9].
Instead, it is built around obtaining stable long-term clock
rate estimates using a feedforward approach. This enables it
to provide two clocks, one for time differences, and one for
absolute time. This approach circumvents the usual tradeoff
problem, for example in PID controllers, whereby gain param-
eters which improve short term tracking do so at the detriment
of rate stability over the time-scales at which tracking operates.

The synchronization algorithm operates in client-server
mode. Each round-trip generates four timestamps, two in
timeval format from the server (taken at times ta and tf
in Figure 1), and two raw TSC timestamps taken at the host
(taken at times tb and te in Figure 1). These timestamp 4-tuples
are used to provide an estimate p̂ of the average CPU oscillator
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Fig. 1. Description of an NTP round-trip packet exchange showing the packet
departure (ta, te) and arrival (tb, tf) event times. The DAG card provides
reference timestamps near the host, taken at times tga and tg

f
, corresponding

to ta and tf respectively. The Host Round Trip Time is Rh = dh↑ + dh↓.

period p. An uncorrected clock which does not take clock drift
into account can then be defined as Cu(t) = p̂ · TSC + K,
where K is an estimate of the initial offset which is not
updated. Instead, an estimate θ̂ of the error in Cu(t) is updated
at each new incoming stamp. The two clocks are then:

Cd(t) : ∆(t) = Cu(t2)− Cu(t1) = ∆(TSC) · p̂, (1)

Ca(t) : Ca(t) = Cu(t)− θ̂ = p̂ · TSC +K − θ̂. (2)

The difference clock Cd(t) does not incorporate the correction
θ̂, so the constant K cancels exactly. Hence, Cd(t) directly
benefits from the underlying rate stability of the TSC over
small to medium timescales, and is not perturbed by estimates
of drift, which are irrelevant over those scales. For example,
a rate stability of 1 part in 107 over a RTT of 1 s yields an
error of only 0.1µs.

Measuring absolute time requires that drift be tracked.
Hence, θ̂ is incorporated into the definition of the absolute
clock Ca(t), which results in medium term variability since
estimates must be based on a limited time window, and used
even if not ideal (for example due to congestion). However,
by not changing K, instead applying a correction only when
reading, the absolute clock avoids varying its underlying rate
to track drift, which improves stability and enables meaningful
sanity checking.

The key problem in synchronising clocks over a network is
the variable delays due to queueing in network elements, and
interrupt, queueing and processing delays in the host and/or
server hardware and operating systems. Whereas in systems
using the Precision Time Protocol (PTP, ie. IEEE-1588), these
can be reduced to near zero by the use of boundary clocks
which are typically hardware based (see however [2]). The
TSCclock is designed to be robust to large and highly variable
delay jitter as it receives its timestamps via packets which
travel across the network and back. Thus, apart from the
feedforward design described above, the entire structure of
the TSCclock synchronization algorithms is aimed at compen-
sating for this jitter successfully, that is both accurately and
robustly. If there were no jitter, then synchronization reduces
to the calculation of propagation delays, which apart from path
asymmetry issues (which are intrinsic and cannot be overcome
by any algorithm), is trivial.
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Fig. 2. Testbed: UDP packets are timestamped externally by DAG and
internally by each of the SW-GPS or SW-NTP and TSCclock inside the host.

The TSCclock performs non-linear filtering based on round-
trip times. It uses a simple but empirically very well justified
model of round-trip times, namely a minimum constant plus
positive random noise. This approach is extremely effective
in identifying those packets which contain the best (smallest)
network delays. The estimators of p̂ and θ̂ above are based
on these together with windowing for variance reduction.
More precisely, the excess of RTT above an estimate r̂ of
the minimum RTT r is used as a basis of rejection of
distorted timestamps when measuring p̂, and as a weight when
averaging estimates made over several packets in the case of
θ̂. A more detailed account is given in [4], [7], including how
to deal with changes in the minimum delay level, which can
occur for example following changes to layer 2 or 3 routing.
The resolution of the TSCclock is tied to that of the CPU, and
is around 1 ns.

III. TESTBED

Any software clock running on typical computer architec-
ture and operating systems has to deal with system delay
created by resource sharing and competition among running
processes. As a general term, we refer to these delays as system
noise. System noise affects the timestamping of any event of
interest by delaying the reading of the clock. In other words,
timestamps of events used to synchronize a software clock
(arrival time of a reference time packet for example) or events
used to assess clock performance, are all affected. Based on
this simple observation, we designed a testbed to gain insights
into system noise and so distinguish timestamping errors from
actual clock errors.

Figure 2 shows our testbed, consisting of a PC host running
three clocks: SW-GPS (ntpd synchronized to local GPS), SW-
NTP (ntpd synchronized to stratum-1 NTP servers), TSCclock
(synchronized to stratum-1 NTP servers), and a precision
external reference, a 3.7GE DAG card [10] which timestamps
packets in hardware without loss, even at high rate. The DAG
card embeds its own hardware clock synchronized using a
GPS Pulse-Per-Second (PPS) input with a nominal accuracy
of ±100 ns. Since the publication of [8] we have added a
precision PPS source, a PRS10 Rubidium oscillator locked to
a GPS PPS signal for long term stability. This PRS10 outputs
an extremely stable PPS signal (5×10−6 PPM, [11]) which we
use to feed both the SW-GPS clock and the DAG, improving
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Fig. 3. Performance of SW-NTP a ntpd based SW clock (resp. TSCclock) using servers inside (resp. outside) the LAN.

the latter’s timestamping error to ±40 ns [12], comparable to
IEEE-1588 specifications.

To assess the performance of each of the three clocks,
UDP packets are exchanged between the Host and another
Unix computer on the network. Packets are sent from the
host monitor and for each one sent, the Unix PC replies with
a similar UDP packet. This packet exchange constitutes the
series of events used to trigger the reading of each of the
clocks and translates into several series of timestamps which
can be compared.

The comparison of the timestamp time-series made available
by our testbed is twofold and we refer to it as the Internal
and External comparisons. The Internal comparison relies on
slight modifications to the Linux and FreeBSD kernels for
the timestamping of each incoming or outgoing UDP packet.
The main objective of these modifications is to be able to
timestamp each packet event using two clocks in a “back to
back” fashion. The packet timestamping is done using the
packet capture library libpcap. The modifications applied to
the Linux and FreeBSD kernel are different and are driven by
the implementation of the kernel timestamping function made
available to libpcap on these two platforms. On FreeBSD, the
call to timestamping functions takes advantage of the Berkeley
Packet Filter subsystem, but our modifications slightly improve
the timestamping location for each of the clocks, moving
them slightly closer to the network card driver code. On
Linux kernels, timestamps are taken in the kernel, right after
the driver code returns and are exported using RAW sockets
opened by libpcap.

We implemented these new timestamping calls so that
timestamps of the same event obtained from different clocks
are taken one after the other, with no out-scheduling, and
so share almost exactly the same system noise. As a result,
the Internal comparison provides timestamps for which the
clocks share the same timestamping error. When compar-
ing corresponding timestamps from two different clocks the
timestamping error cancels, revealing the relative performance
of the two clocks under study. However, although free of
timestamping error, this comparison does not provide an
indication of absolute performance as none of the clocks used
can be considered as references.

The use of the DAG card provides us with the External
comparison that is absolute with regards to its embedded clock.
However, this comparison is not free of timestamping noise
since the packets do not reach the DAG at the same time as
they pass the boundary between the NIC and the host operating

system, which is the target event we aim to timestamp.
These delay gaps between the target host event times and the
corresponding ones at the DAG are shown as dh↑ = tga − ta
and dh↓ = tf− tgf in Figure 1. As extensively detailed in [6]
the measurement of the sum of these, the “Host Round-Trip
Time” Rh = dh↑ + dh↓, provides information on these ‘gaps’
between the host and the DAG measurement, and helps us
quantify host noise in general. There are two components
to this gap/noise: a constant offset containing a fundamental
ambiguity arising from asymmetry in the systems’ handling of
packet transmission and reception, and a variable component
which in principle can be filtered out, but in practice can
only be done imperfectly. More precisely, the asymmetry
component is bounded by 2×min(Rh) and implies the same
bound on the clock error uncertainty, whereas Rh is the per-
packet bidirectional noise that superimposes to the clock error
measurement, producing a limit on the interpretation of the
results. Note that similar issues, including asymmetry, hold
within a software server.

Combining both Internal and External comparison we are
able to give a lower bound on system noise at the host. We are
also able to provide bounds on, as well as remove, the inherent
ambiguity of the results due to the network asymmetry existing
in the exchange of NTP packets. More details, a precise
description of the methodology associated to the testbed, and
the analysis of operating system noise and path asymmetry,
can be found in [6].

IV. EXPERIMENTAL RESULTS

In this section we present experimental results to illustrate
how the TSCclock is able to fill the gap between the two
timing solutions SW-NTP and IEEE-1588.

A. Performance in the NTP world

Figure 3 motivates our work and is a good starting point to
illustrate the External comparison part of the methodology. It
shows ntpd performance under ideal conditions: the SW-NTP
clock running on the host being synchronized to a stratum-1
peer on the same LAN. Despite this, its absolute error (given
by the External comparison using DAG packet timestamps)
varies in a 1 ms band. In contrast, the TSCclock, synchronized
to a stratum-1 NTP server outside the LAN, is over an order
of magnitude smaller.

From the perspective of PTP, we are interested in seeing
how well the TSCclock can perform in a LAN environment.
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Fig. 5. TSCclock synchronized to stratum-1 server two hops away, polling period 16s, Internal in-host comparison against SW-GPS. Left: time series over
33 hours. Right: normalised histogram (from 1st to 99th percentile), median = −1.3µs, IQR = 18µs.

Figure 4 gives the absolute performance of the TSCclock over
92 hours, measured externally via DAG. In this experiment,
the TSCclock is synchronized to a GPS synchronized stratum-
1 server located on the same LAN. Again, the TSCclock relies
on NTP packets to exchange time information with the server
and to synchronize to it. The inter-quartile range (IQR) of
this External comparison is only 7.8µs, a value identical to
the level of system noise measured on this particular host.
The median error is only 13.6µs. The performance of the
TSCclock is then particularly good, especially with regards to
the large polling period used in this experiment (256 seconds).
We measured, however, an uncertainty of 104µs on the median
clock error value due to path asymmetry effects.

While this performance is still far from what is achievable
using dedicated hardware, we believe that few software solu-
tions reach this level of accuracy. Furthermore, the server used
itself suffers from large system noise, as its timestamps are
not created in the kernel and so suffer from operating system
delays. We anticipate significant performance improvements
if IEEE-1588 boundary clocks were used instead of stratum-1
NTP servers, and we explore this further below.

Next (Figure 5), we perform a direct comparison against a
GPS synchronized software clock in the same host, using a
modified kernel. We observe that the two clocks agree to less
than 2µs with a spread of 18µs over the 33 hours. While this
experiment is a strong challenge for the TSCclock (the quality
of each clock synchronization source is radically different)
the TSCclock performance is comparable to that of the GPS
synchronized server.

This short section illustrates how the TSCclock outperforms
SW-NTP, and acts as a proof of concept showing how the
TSCclock can be easily integrated into the existing NTP world
and take advantage of the existing stratum architecture for
fast deployment. The comparison to a hardware-based solution

such as SW-GPS highlights the impact of the synchronization
source on TSCclock performance. The following section gives
a taste of what can be achieved if one takes advantage of IEEE-
1588 or similar synchronization sources.

B. Approaching the IEEE 1588 world – Typical server
Because typical NTP stratum-1 servers are computers built

from commodity hardware, the system noise they undergo
when processing NTP packet contributes to the degradation
of the time information exchanged. While this ‘server noise’
may be neglected when synchronising to a server located
several hops away, on a Gigabit Ethernet LAN, the server
noise, minimum processing delay, and the RTT are all in the
hundred(s) of microsecond range. Naturally, using a master
clock as defined in IEEE-1588 should remove these server side
errors and thereby improve TSCclock performance. However,
we do not currently have such a master clock in our testbed.

A simple way to assess the impact of the NTP server is
to use the DAG instead. In terms of the timestamps indicated
in Fig. 1, this involves using tga and tgf in place of tb and te
respectively. As mentioned before, the DAG card is a GPS
synchronized hardware clock with similar characteristics to
an IEEE-1588 master clock. Hence, this manipulation allows
to replay TSCclock captured traces with the network and
server defects removed. Such re-processed traces exhibit the
TSCclock algorithm performance where the only inherent
limitation is the system noise of the host it is running on.

To observe the impact of the above DAG ‘pseudo-master’,
we first look at Internal and External comparisons of the
TSCclock using the stratum-1 NTP server as normal. We then
replace the server timestamps with the DAG ones as described
above and compare.

Figures 6 and 7 show the TSCclock performance, syn-
chronising to a GPS synchronized stratum-1 server located
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Fig. 6. TSCclock synchronized to stratum-1 server outside the LAN (2-hops away), polling period 16s, Internal in-host comparison against SW-GPS. Left:
time series over 12 days. Right: normalised histogram (from 1st to 99th percentile), median = −27.5µs, IQR = 14.3µs.

0 2 4 6 8 10
−50

−10
0

10

50

Time [Day]

C
lo

ck
 E

rr
or

 [µ
s]

 

 

 (SW−GPS) − (DAG)
 (TSCclock) − (DAG)

0 20 40 60 80
Clock Error [µs]

(SW−GPS) − (DAG)
Median 14.7

IQR    15.2

0 20 40 60 80
Clock Error [µs]

(TSCclock) − (DAG)
Median 43.9
IQR    20.0

Fig. 7. TSCclock synchronized to stratum-1 server outside the LAN (2-hops away), polling period 16s and SW-GPS clock error using External DAG
comparison. Left histogram: SW-GPS, median = 14.7µs, IQR = 15.2µs. Right histogram: TSCclock, median = 43.9µs, IQR = 19.9µs.

0 2 4 6 8 10

−50

−10
0

10

50

Time [Day]

C
lo

ck
 E

rr
or

 [µ
s]

 

 

 (TSCclock) − (SW−GPS)

−40 −20 0 20
Clock Error [µs]

(TSCclock) − (SW−GPS)
Median −2.0
IQR    8.8

Fig. 8. TSCclock using DAG as a pseudo-master clock, polling period 16s, Internal in-host comparison against SW-GPS. Left: time series over 12 days.
Right: normalised histogram (from 1st to 99th percentile), median = −2.0µs, IQR = 8.8µs.

0 2 4 6 8 10
−50

−10
0

10

50

Time [Day]

C
lo

ck
 E

rr
or

 [µ
s]

 

 

 (SW−GPS) − (DAG)
 (TSCclock) − (DAG)

0 20 40 60 80
Clock Error [µs]

(SW−GPS) − (DAG)
Median 14.7

IQR    15.2

0 20 40 60 80
Clock Error [µs]

(TSCclock) − (DAG)
Median 17.1

IQR    17.0
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2-hops away, against SW-GPS. Figure 6 shows the Internal
comparison, namely TSCclock(t)-SW-GPS(t). The median
difference between the TSCclock and SW-GPS is −27µs
and the corresponding IQR is 14µs. This is an honourable
performance for the TSCclock as the server is outside the
LAN. The External comparison of the TSCclock to DAG in
Figure 7 is also good, with a median error of 44µs and a
spread of IQR=20µs. The unknown one-way delay incurred
when the SW-GPS Processes the PPS signal obtained through
the host serial port is the main contributor to its error. This
delay cannot be measured but is reasonably estimated at
around 10µs.

A long term oscillation can be observed both in the Internal

and External comparison for the TSCclock, but not SW-GPS.
Because the TSCclock is designed to track and cancel the
non-linear drift of the CPU oscillator, we suspect that this
oscillation is due to the stratum-1 server itself (no sustained
network congestion having been observed over this period).
This hypothesis can be investigated by replacing the server
timestamps with the DAG timestamps (figures 8 and 9). The
results confirm our speculation, the large scale oscillation is
absent when using the DAG card as a pseudo-master. The
Internal comparison now shows that the TSCclock and SW-
GPS only differ by −2µs with an IQR spread smaller than
9µs, suggesting that the TSCclock essentially behaves as SW-
GPS when using a master clock on the LAN. This conclusion



is consistent with the External comparison in Figure 9 showing
extremely similar TSCclock and SW-GPS clock error charac-
teristics when compared to DAG.

For the above experiment, the IQR of system noise has
been measured at 11µs, smaller than the IQR of the TSCclock
(and SW-GPS also). This indicates that, despite the use of the
pseudo-master clock (which improves the server timestamp
quality but leaves the round-trip times unaffected) the server
performance is still impacting slightly on the total error, and
motivates using a server that is even better. This can be
achieved by selecting a server on the LAN to reduce the RTT.

C. Approaching the IEEE 1588 world – Improved server

We now use a server on the LAN, and take advantage
of our new Rubidium atomic clock. We use its PPS signal
in three ways: to feed the SW-GPS, the DAG card, and to
synchronize the SW-GPS of the NTP Stratum-1 server to which
the TSCclock synchronizes.

Figures 10 and 11 show these new captured datasets. The
Internal comparison (Figure 10) shows that the TSCclock and
SW-GPS differ by a median value of −14µs with an IQR
of 12µs. This indicates a very clean dataset free of coarse
stratum-1 server errors and significant network congestion.

The very low IQR values of the External comparison of
the same experiment (Fig. 11), show that the use of the
closer server and atomic clock improves the performance
of both clocks. Note that the shape of the SW-GPS error
distribution displays oscillatory behaviour (think sinusoid plus
noise), indicating that the feedback based ntpd algorithm is not
locking on. Such instability is of course highly undesirable,
and is not present in the TSCclock. Note that the IQR of
the bidirectional system noise on this host was measured
at 62µs, a large value, but despite it the variability of the
TSCclock essentially matches that of SW-GPS. Regarding
median performance, the SW-GPS is slightly behind the DAG
reference clock by a median value of −9µs. The TSCclock is
apparently more accurate being only 5µs ahead of the DAG.

We now replace the NTP server timestamps of the trace
by those from the DAG card. The Internal comparison using
this pseudo-master is given in Figure 12. Interestingly, at
8.9µs the IQR has not improved by any significant amount,
indicating that server timestamps issues are in fact no longer
the dominant source of error. The median results are far more
interesting. The two clocks remain approximately the same
distance apart, however the sign of the difference has changed!
Since SW-GPS is unaffected by the use of the pseudo-master,
this change is entirely due to the TSCclock which is now
apparently behind the DAG reference.

The External comparison (Figure 13) confirms the Internal
observations. The IQR values are marginally better but the
medians have undergone a sizeable shift: the median TSCclock
error is now −21µs compared to 5µs previously. While
we were expecting a large improvement we see instead an
apparent performance degradation! In fact there is no con-
tradiction in this. First, as we described above, the External
comparison is subject to an uncertainty due to host noise,
measured here at 32µs, which is larger than the apparent

shift. Moreover, the shift can be explained as a change in
asymmetry. While the TSCclock performance of the original
experiment is dependent on a total path asymmetry comprising
host, server, and network components, the result obtained with
the pseudo-master clock effectively ‘cuts out’ the network
and server, leaving only the host component. As noted earlier
the latter is determined by how the network adapter and
corresponding driver implementation process outgoing and
incoming packets, and is therefore highly hardware dependent,
and cannot be measured here. However, as noted earlier it
is bounded by 2 × min(Rh) which is measurable. As the
NIC and its driver are responsible for the host asymmetry,
it is important to choose them carefully in order to minimise
Rh. Indeed, depending on the NIC, we have observed very
different system noise characteristics, with a spread varying
from IQR=22µs for a RealTek 8139 Fast Ethernet card, to
an IQR=85µs for a Gigabit Ethernet Broadcom BCM5751
chipset (values observed on FreeBSD 6.1). Using the same
two NICs, we have also observed the bound on the asymmetry
varying from from 30µs to 150µs. The choice of NIC and
driver is therefore essential to avoid losing the benefits of using
a highly accurate master clock as server on a LAN.

Finally, it interesting to note that since the host and server
hardware used in Figure 11 is similar, it is likely that the host
asymmetry was originally partly compensated by the server
asymmetry mirroring it, leading, ironically, to an increase in
median error following the move to the more accurate pseudo-
master server. We cannot however confirm this here.

D. Into the Internet

The previous section studied the parameters impacting the
performance of the TSCclock on a LAN. In this section we
provide some insight into the potential of the TSCclock as an
Internet-wide synchronization solution.

Figure 14 looks into the respective absolute performance of
the TSCclock and SW-NTP as a function of two parameters.
First, the quantity of raw synchronization information as
controlled by the polling period to the server, and second,
the distance to the server measured in hops. As the hop count
increases, the delay distribution moves to higher values, and
the path asymmetry also (very likely) increases. For each
experiment, the TSCclock and SW-NTP share the same stream
of NTP packets. In each plot, the thick black lines show
median errors, and the surrounding lines give [2, 25, 75, 98]
error percentiles over almost 2 days. ServerLoc is a stratum-
1 server installed two hops away from the host PC running
both clocks with a minimum Round-Trip Time (RTT) around
0.38 ms. ServerNear is a stratum-1 server located 5 hops away
with a minimum RTT measured at 0.89 ms. Finally, ServerFar
is a stratum-1 server located 3500km away, 10 hops away
(as observed over stable routes) for which we measured a
minimum RTT of around 37.7 ms.

For each clock we observe the expected qualitative be-
haviour: as the polling period and the distance to the reference
clock increase, the performance degrades. In this experiment
the TSCclock performs clearly better than SW-NTP, in partic-
ular its variability (IQR) is much smaller. Also in each case,
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the median value of the absolute performance of the TSCclock
is closer to the reference given by the DAG card and much
more stable as the polling period increases. This illustrates the
potential of the algorithm to go well beyond the LAN setting
with only a modest performance penalty.

V. PRIOR WORK

The literature on practical software based systems capable
of achieving clock synchronization over networks is relatively
limited. The original NTP literature [13], [1], [9] contains
much information but no formal analysis, and to the best
of our knowledge no thorough benchmarking study of ntpd
performance has been published using a detailed methodology

such as we give here. A software implementation of PTP was
described in [2] and made available by Correll et al. [14].
It uses a PI controller to adjust tick rate, a feedback mech-
anism, in contrast to our feedforward approach, and offers
only a very preliminary evaluation of performance. Work
addressing practical Internet measurement problems related
to synchronization, for example [15], have tended to address
the improvement of timestamping accuracy in post-processing,
rather than tackling synchronization algorithms running live.

Recently there has been an increase in interest in rigorous
analysis of network synchronization. Typically the approaches
are reliant on strong assumptions, principally that drift is of
an affine type (i.e., simple skew or pure frequency models).
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Fig. 14. TSCclock versus ntpd for three polling periods and three time servers, left to right: LAN; same campus; across the continent.

For example Berthaud [16] uses an affine drift model and the
language of convex closures to combine local error bounds
on clock error at a host into global bounds, whereas [17]
tackles an optimization problem for determining one-way
delays between nodes in a network assuming that clocks are
perfect and run at the same rate, but have different constant
offsets. There has been recent activity in synchronization over
wireless networks, in particular adhoc IEEE 802.11 networks.
For example in RBS a synchronization algorithm is described
which exploits the broadcast nature of the medium to enable
‘simultaneous’ timestamping by multiple nodes of the same
events. These timestamps can then be exchanged and com-
pared by receivers to estimate relative node offsets. Elson et
al. [18], in the context of a simple skew model (it is proposed
that skew estimates be recalculated on a longer timescale),
propose, but do not evaluate, a scheme for optimizing the
transmission of synchronization messages over a network
subject to an energy constraint.

VI. CONCLUSION

We compared the TSCclock performance against both the
SW-NTP and SW-GPS clocks, the most widely deployed low
cost alternatives at this time. The results presented help us gain
an understanding of the performance of the TSCclock, and
highlight the ntpd server system noise as a possible obstacle to
further performance improvements. Specifically, we used the
DAG card as a virtual IEEE-1588 master clock to measure the
performance of the TSCclock under conditions where server
noise and network asymmetry are greatly reduced, and ob-
served (1) an accurate server (no long term drift, timestamping
error below 40 ns) improves accuracy and robustness, (2) in
a LAN environment, server error is not a significant cause of
TSCclock error, (3) in a LAN environment the performance
of the TSCclock is comparable to that of the SW-GPS, (4) in
a LAN environment most of the TSCclock residual error is
due to the asymmetry and noise characteristics of the network
interface card and driver used.

Another interesting comparison would be to compare the
performance of the TSCclock with the PTPd solution [2].
While having different objectives, we believe the TSCclock
would be a robust alternative to PTPd in providing accurate
software clock on LANs. In the future, we also will investigate
the possibility of using the TSCclock as a boundary clock.

The promising performance observed when comparing the
TSCclock against SW-GPS calls for a modified version of the
TSCclock capable of processing GPS input. Without being
able to reach the level of accuracy offered by dedicated
hardware, we believe this solution would offer an inexpensive
alternative to network applications requiring accuracy in a
10µs range, or even below.
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