
ISPCS 2008 International IEEE Symposium on Precision Clock
Synchronization for Measurement, Control and Communication
Ann Arbor, Michigan, September 22-26, 2008

The Cost of Variability
Julien Ridoux, Darryl Veitch

ARC Special Research Center for Ultra-Broadband Information Networks (CUBIN),
An affiliated program of National ICT Australia (NICTA)
EEE Department, The University of Melbourne, Australia

{jridoux, dveitch}@unimelb.edu.au

Abstract— We explore the robustness of synchronization per-
formed in the presence of variable latencies using two software
clocks: the TSCclock, designed to replace ntpd for Internet
synchronisation, and ptpd, a software implementation of IEEE-
1588. Using a precise comparison methodology the TSCclock is
shown to be more accurate and far more robust. We discuss the
reasons why and the implications for IEEE-1588 more generally.

Index Terms— clock synchronization, TSCclock, ptpd, IEEE-
1588, latency, robustness

I. MOTIVATION

It is well known that variability in latencies between system
components separating clock masters from slaves impacts on
synchronization accuracy. The IEEE-1588 Precision Time Pro-
tocol (PTP) was developed primarily for use in all-hardware
solutions requiring high accuracy, and in such a context,
latencies are close to constant. Even so, the introduction of
transparent clocks was motivated by the need to control error
accumulation, ultimately a latency effect, in network devices.
Much greater latency variability occurs when commodity
hardware, or worse, software, enters in.

There is now increasing interest [1], [2], [3], [4] In PTP-
compatible software implementations using commodity hard-
ware in Ethernet LANs, motivated either by cost issues, or
through a desire to allow inexpensive clients to immediately
take advantage of PTP devices already installed in a network.
From the other direction, software based clock synchronization
is the standard solution in computer networking in general,
given the prevalence of the Network Time Protocol (NTP)
daemon ntpd [5]. Here the focus is on low cost but low
accuracy (1 to 100’s of [ms]), based on slaves accessing
masters over the Internet, but it also functions over Local Area
Networks (LANs) where performance can be below 1[ms].

Over the last few years [6], [7], [8] we have developed the
TSCclock, a servo design and software solution we hope will
replace ntpd, whose performance has been detailed in [8], [9].
In [10] we demonstrated that it can achieve 10µs accuracy
over LANs and compares favorably with GPS synchronised
ntpd. Another available solution is ptpd [1], a software imple-
mentation of PTP described in [2], where errors below 10µs
were also reported over a LAN.

In this paper we first compare the performance of the
TSCclock and ptpd. Our second aim is to highlight through
these examples the potentially destabilising effect of large
latencies, the consequent need for robustness, and the danger
in ignoring the ‘servo side’ of IEEE-1588 implementations.

Unix PC

NTP Server
Stratum 1

GPS
Receiver

Hub

Host DAG

Card

PPS Sync. NTP flow UDP flow Time Request

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

PTPdPTPd

IEEE 1588 flow

UDP Sender
& Receiver

Atomic

Clock

Fig. 1. Testbed. Timestamps, triggered by UDP packets, are taken internally
by slaves in the Host, and externally in the External Monitor.

II. EXPERIMENTAL SETUP

Figure 1 overviews testbed components. It shows a GPS
synchronised PC acting as a time server (right), a host con-
taining clocks to be evaluated/compared (left), an external
monitor consisting of a GPS synchronised (with atomic clock
corrected PPS) DAG capture card [11] using an Ethernet hub
as a tap, and a UDP packet sender/receiver providing triggers
for timestamping both in the host and external monitor. See
[9] for a more detailed description.
We use a configuration with two hosts and one server PC:
Server: potoroo is both a GPS stratum-1 NTP server for the
TSCclock, and runs the ptpd PTP master (which serves PTP
requests but takes its time from the same NTP master).
Slaves: wallaby (FreeBSD 5.3) and bettong (Linux 2.6.20)
run both the TSCclock and ptpd slaves (we access ptpd’s clock
via the PC’s system clock, which is slaved to ptpd).
Network: There are 2 switches between potoroo and the
monitoring hub to which wallaby and bettong are attached.

Both the TSCclock [12] and ptpd software ([1]) are easy
to install, run on both Linux and BSD Unix, and benefit from
customised kernel timestamping. We use default parameters
for each (no manual tuning), and set the server polling-period
for each to 16[sec]. Note that IEEE-1588 does not specify the
kind of servo controller used. It is common practice however
to use a PI controller, and ptpd is no exception. In contrast,
the TSCclock is feedforward, not feedback based.

III. SERVO DESIGN

We briefly outline here the key differences in approach
between ptpd and the TSCclock, so that the experimental
results may be better understood.

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114−50

0

50

100

150

Time [Hours]

Cl
oc

k
Er

ro
r [
µ

s]

TSCclock
PTPd

20 40 60 80 100
[mus]

PTPd
Median 59.3
IQR 31.6

30 40 50
[mus]

TSCclock
Median 38.3

IQR 8.1

Fig. 2. Ideal environment: bettong by itself with minimal host and network load. Left: clock errors using external monitor, Right: histograms.

0 3 6 9 12 15 18 21 24−150

−100

−50

0

50

100

150

Time [Hours]

Cl
oc

k
Er

ro
r [
µ

s]

TSCclock
PTPd

−50 0 50 100
[mus]

PTPd
Median 23.5
IQR 34.9

40 60 80
[mus]

TSCclock
Median 50.7

IQR 17.7

Fig. 3. Results for wallaby after it joins bettong on the hub. Spikes in host noise generate instability in ptpd (arrow marks event examined in Figure 4).

As described in [2], ptpd is based on a feedback control
mechanism, more precisely a Proportional-Integral (PI) con-
troller, which simultaneously tries to correct both clock rate
and clock offset (or difference from true time). One disad-
vantage of this and other PID controllers is the fundamental
tradeoff, inherent in their design, whereby parameter settings
which improve short term tracking do so to the detriment of
rate stability over the time-scales at which tracking operates,
and in extreme cases threaten even the stability of the system
as a whole. The need for global stability is paramount, which
results in parameter values giving cautious initial convergence,
and errors in clock rate (called ‘noise in medium time scales’
in [2]) which are due to the servo, not the underlying oscillator.

The TSCclock is feedforward based, meaning that it does
not rely on a feedback loop ‘locking onto’ the input signal
(indeed its operation is entirely asynchronous), but instead
post-processes timestamps to estimate the current offset due
to clock drift. It uses these estimates to remove offset error
only when it delivers a timestamp to the user, the estimates
are not used ‘internally’. Underlying instability is therefore
impossible. Furthermore, because of the nature of the non-
linear filtering used (see [7], [8] for details), timestamps
fortunate enough to carry low noise can immediately be
used to improve the estimate of offset error, which is of
immediate benefit to subsequent timestamps. The result is
almost immediate convergence both initially and throughout
operation, and very fast recovery from periods of high noise.

IV. RESULTS

The first set of results in Figure 2 show the error over
time (evaluated using the external monitor) of each slave
clock in bettong under ideal conditions: no other machine on
the hub; negligible network traffic; very light host load. The
time series show very consistent performance for each clock,
however the TSCclock is considerably less variable, with an
Inter-Quartile Range (IQR) of 8.1µs compared to 31.6µs for

ptpd. To assess median performance we must compare it
against the theoretical limit of A/2, where A is the path
asymmetry between the slave and master. We measure the
network component of A as An = 28µs, yielding a net median
error of 24.3µs for the TSCclock and 45.3µs for ptpd. The
asymmetry estimate can be futher improved by including the
host component Ah (see [8]) but for space reasons we omit
this and focus exclusively on variability below. The findings
for ptpd are worse than those from [2], namely median errors
under 10µs and an IQR of around 5-10µs. Details of how
these were obtained were not provided. We use the evaluation
methodology of [9] and apply it uniformly to each clock.

While keeping bettong running, we next add wallaby to the
hub. Again the hosts are minimally loaded as is the network.
The results in Figure 3 For wallaby are roughly similar to
before although variability increases for each clock, since
wallaby has a higher system noise. Note that it appears from
Figure 3 that the TSCclock has higher median error, however
since asymmetry effects have not been removed here, no such
conclusion can be drawn. As mentioned above we focus on
variability in this paper.

Before leaving this benign environment we examine two
interesting points with the help of Figure 4. The left plot shows
a zoom on the startup phase of both clocks for bettong. It

0 15 30 45 60 75 90 105

−800

−600

−400

−200

0

Time [Minutes]

C
lo

ck
 E

rro
r [
µ

s]

TSCclock
PTPd

0 3 6 9 12 15
−6000

−4000

−2000

0

2000

Time [Minutes]

Cl
oc

k
Er

ro
r [
µs

]

TSCclock
PTPd

Fig. 4. Left: zoom on clock startup for bettong Right: zoom on reaction to
host noise event for wallaby (marked by arrow in Figure 3).

0 3 6 9 12 15 18 21 24 27 30 33

−500

−100
0

100

500

Time [Hours]

Cl
oc

k
Er

ro
r [
µ

s]

TSCclock
PTPd

−1000 −500 0 500 1000
[mus]

PTPd
Median 82.1
IQR 260.8

30 40 50 60
[mus]

TSCclock
Median 40.2

IQR 9.4

Fig. 5. Results for bettong with network congestion added (but still low host load). The TSCclock is basically unaffected, ptpd is strongly affected.

0 3 6 9 12 15 18 21 24 27 30 33

−500

−100
0

100

500

Time [Hours]

Cl
oc

k
Er

ro
r [
µ

s]

TSCclock
PTPd

−1000 0 1000
[mus]

PTPd
Median −26.7
IQR 322.3

−30 −20 −10 0
[mus]

TSCclock
Median −17.2
IQR 12.1

Fig. 6. Results for wallaby with both network congestion and high host load. Both clocks are affected, but TSCclock much less so.

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

−100

0

100

Time [Minutes]

Cl
oc

k
Er

ro
r [
µ

s]

TSCclock
PTPd

Disconnect

Reconnect

150 180 210 240 270 300
−300

−250

−200

−150

−100

−50

0

Time [Minutes]
C

lo
ck

 E
rr

or
 [m

s]

PTPd
275 285 2950

2

4

6

8

Time [Minutes]

C
lo

ck
 E

rr
or

 [m
s]

PTPd

Fig. 7. Robustness test: disconnection from server. The TSCclock drifts gracefully, ptpd does not. Right: zooms on ptpd disconnection and reconnection.

takes an hour and a half for ptpd to converge whereas the
TSCclock achieves nominal performance almost immediately.
The right plot is a zoom-out (vertically) and in (horizontally)
on the spike pointed to by the arrow in Figure 3. The triggering
event for this spike is caused by operation system effects and
is typical of FreeBSD – no such spikes were seen on Linux (it
is likely due to implementation differences of the sockets used
in the kernel timestamping). What is of interest here is how
the clocks react to such an unusually ‘large’ system ‘noise’
input. In ptpd the event resulted in a very large jump in error
and a slow, oscillating return to synchronisation. In contrast,
the TSCclock is unaffected.

We next increase network congestion by causing traffic to
be exchanged between wallaby and a third host placed on the
monitoring hub. We repeatedly transfer a 750MB file simul-
taneously to and from wallaby via the UNIX scp command,
separated by 10[sec] pauses. Each transfer is capped to 15000
kbit/s, corresponding to a total average load of around 30Mbps,
and lasts around 7 minutes.

Figure 5 Shows the performance of the clocks on bettong
under this scenario of high network congestion, but low host
load. Comparing against Figure 2, We see that the TSCclock
is barely affected, but ptpd suffers significantly, in particular
in terms of its variability (IQR).

Figure 6 shows the performance on wallaby during the same
experiment. Note that wallaby experiences not only significant

network congestion but also significant system noise because
it is the origin and destination of the traffic. We again find that
the IQR for the TSCclock is barely affected when comparing
either against Figure 5, or against the same machine under
very low load (Figure 3, in fact it is lower than that 17.7µs
found in that case!), whereas the IQR performance of ptpd
degrades by a further 61.5µs from the already poor result of
Figure 5. Thus the performance of the TSCclock under heavy
load is far better than the performance found for ptpd even
under the ideal conditions of Figure 2.

Note that under these high load conditions, the noise pol-
luting the external comparison also increases significantly, and
in fact dominates the actual clock error in the case of the
TSCclock. This noise is in fact more severe on the incoming
side. Thus, whereas in the other plots we showed errors
as evaluated using the incoming direction, in Figure 6 we
have instead given performance using the external comparison
from the outgoing direction. Even the outgoing direction
suffers from increased noise however in this more difficult
environment, which means that actual clock performance is
better than the results quoted above. Note that the change from
incoming to outgoing brings with it a shift in median related
both to asymmetry and the constant component of the external
comparison noise, which we have not attempted to correct for
here.

Finally, we examine the robustness with respect to a serious,

but quite common, network event: a loss of connection to the
time server. We return to the light load scenario, and first allow
each clock to converge. We then disconnect the monitoring
hub from the network for about 2 hours, then reconnect it.
Figure 7 shows the impact on wallaby. The TSCclock shows
a gradual drift, the inevitable result of a lack of access to a
master, and immediate recovery upon reconnection. In contrast
the reaction of ptpd is extreme. As the middle plot in Figure 7
shows, following the disconnection at 150 minutes ptpd dives
to reach an error of −300[ms] before reconnection, after which
its error remained in the [ms] range (rightmost plot) for most
of the hour required for convergence.

V. RELATED WORK

We briefly describe here two other works, in addition to
[1], [2], which have examined the performance of PTP under
noisy environments.

In [3] the impact of jitter, quantization, and temperature
on synchronization performance of a set of slaves receiving
PTP Sync messages from a Master in a line topology, is
examined. Each of the above factors are considered using
simple models, such as a constant rate error resulting from
a temperature change. Error formulae are derived, and a
Matlab based simulation study is also provided. There is no
examination of the role of filtering to reduce the errors found,
and no use of real data or more complex non-linear drift and
noise.

In [4] the authors evaluate the performance of a simple
two-parameter servo design in an OMNET++ simulator. A
scenario is considered with a single Master and Slave, with
timestamp variability introduced through sharing a switching
element with simulated cross-traffic. Clock error is given as a
function of the servo parameters. Again neither filtering nor
realistic non-linear drift in the Slave are studied.

VI. CONCLUSIONS

We have shown that the TSCclock is much more robust to
deviations from an ideal, low noise environment, than the ptpd
implementation of PTP. Indeed, the TSClock has been shown
to behave stably under far noisier conditions with servers
across the Internet [8], [10]. The broader point we wish to
emphasize here however is: if even a single component along
the path from master to slave contains latency variability
and/or extreme events, then servo performance can be at risk.
More specifically (recall IEEE-1588 does not specify servo):
(i) Expensive master and/or transparent clocks are pointless if
a slave servo is not robust to its environment,
(ii) PI controllers may perform badly with variable latencies,
(iii) A servo of the TSCclock type (feedforward, not feedback,
based) could offer greater stability, and performance, for both
software and hardware PTP implementations.

In this paper we have exploited the robustness of the
TSCclock servo as it stands. This is a client side solution
which can interwork with the existing network of NTP servers.
To complete the task of replacing the NTP based system
however several more steps are required. First a server side
solution is needed, which should interwork with NTP clients

as well as communicating with TSCclock clients in a more
generic way. One of the problems with the existing NTP
edifice is that monolithic way in which the client servo, server
servo, and timestamp exchange protocol are integrated. The
TSCclock is in fact an implementation of a generic Robust
Absolute and Difference clock (RADclock) which happens to
use the TSC register as a counter and a NTP server as a remote
reference. The underlying RADclock algorithms are modular
in nature and we envision the server design to be along the
same lines.

REFERENCES

[1] “The Precision Time protocol (PTP), ptpd,” http://ptpd.sourceforge.net/.
[2] K. Correll, N. Barendt, and M. Branicky, “Design Considerations for

Software Only Implementations of the IEEE 1588 Precision Time
Protocol,” in ISPCS. Zurich, Switzerland: IEEE Computer Society,
October 10-12 2005.

[3] N. Chongning, D. Obradovic, R. Scheiterer, G. Steindl, and F.-J. Goetz,
“Synchronization Performance of the Precision Time Protocol,” in Proc.
ISPCS 2007, Vienna, Austria, Oct. 1-3 2007.

[4] G. Giorgi and C. Narduzzi, “Modeling and Simulation Analysis of PTP
Clock Servo,” in Proc. ISPCS 2007, Vienna, Austria, Oct. 1-3 2007.

[5] D. Mills, “The network computer as precision timekeeper,” in Proc. Pre-
cision Time and Time Interval (PTTI) Applications and Planning Meet-
ing, Reston VA, December 1996, pp. 96–108.

[6] A. Pásztor and D. Veitch, “PC based precision timing without GPS,” in
Proc. ACM Sigmetrics Conf. Measurement and Modeling of Computer
Systems, Del Rey, California, 15-19 June 2002, pp. 1–10.

[7] D. Veitch, S. Babu, and A. Pásztor, “Robust Synchronization of
Software Clocks Across the Internet,” in Proc. ACM SIGCOMM
Internet Measurement Conf., Taormina, Italy, Oct 2004, pp. 219–232.

[8] D. Veitch, J. Ridoux, and S. Babu, “Robust Synchronization of
Absolute and Difference Clocks over Networks,” Accepted for
publication, IEEE/ACM Trans. on Networking, to appear June, 2009.

[9] J. Ridoux and D. Veitch, “A Methodology for Clock Benchmarking,”
in Tridentcom. Orlando, FL, USA: IEEE Comp. Soc., May 21-23
2007.

[10] ——, “Ten Microseconds Over LAN, for Free,” in Int. IEEE Symp.
Precision Clock Synchronization for Measurement, Control and
Communication (ISPCS’07), Vienna, Austria, Oct.1-3 2007, pp.
105–109.

[11] “Endace Measurement Systems,” http://www.endace.com/.
[12] J. Ridoux and D. Veitch, “TSCclock Webpage.”

