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Abstract— Accurate timestamping is a basic need in traffic
monitoring as well as distributed computing in the broad sense,
and is destined to become increasingly important as network
latency becomes a hard barrier to improved performance across
networks. Software clocks need to be improved to meet this
challenge, however evaluating their performance is non trivial,
as they are imbedded inside computing systems. We present a
methodology for clock validation which allows many of the diffi-
cult problems to be resolved. Our method involves a combination
of external and internal validation strategies, and makes use of
GPS synchronized DAG cards and system clocks. We illustrate
in detail how it may be applied using real data collected from 3
clocks implemented in UNIX PCs.

I. INTRODUCTION

As has been foreseen for some time, the Internet is ap-
proaching a new step in its evolution. Giving users the ability
to access high throughput networks via technologies such as
Fiber-To-The-Home will soon change our needs and usage
patterns, as will high bandwidth mobility. Applications will
be more distributed and smarter, demands on providers to
report quality higher, and the expectations of users, even
higher. More and more, high performance will depend on tight
integration over distributed servers and multiple simultaneous
connections, and the careful management of latency between
them to provide users with immediate response. Underlying
this is the fact that the ’tightness’ of distributed applications is
fundamentally limited by the quality of clock synchronization.
In this context, the design of inexpensive but accurate new
timekeeping system is a crucial issue.

The development of more accurate clocks that perform
well and reliably in practice cannot be successful without an
ability to test their performance under operational conditions.
However, there is a fundamental problem in that clocks
are embedded inside computer systems. There is no perfect
clock inside the system against which a given clock can be
directly compared. In addition, clock comparisons suffer from
system noise such as complex communication delays, interrupt
latencies and resource race conditions. Furthermore, the act of
reading a clock when desired, that is timestamping, is itself
problematic and makes validation problematic.

One must admit that clock validation is a niche subject,
as well as being somewhat dry. However, the fact is that it
is important, difficult, and neglected. Previous studies exist

([1]), but we know of no published work describing how
it can be done accurately for software clocks on modern
systems, although an early form of part of what we present
here appeared in [2], in the context of evaluating a new
clock. In this paper we provide a methodology capable of
circumventing, to a large extent, the inherent difficulties in
this problem, enabling the accuracy of software clocks to be
established up to 10’s of microseconds. To do so, we make use
of a testbed including GPS synchronized reference clocks, a
DAG high performance measurement card, and modified BSD
kernels.

Our methodology relies on performing two kinds of vali-
dation, ’external’ and ’internal’, which have complementary
advantages, in order to avoid the inherent disadvantages of
each. Our presentation is generic in that we clearly define
and describe the underlying fundamental issues, and can
be used in principle with any clock, but practical in that
we use a real testbed, and actual implementations of three
significantly different clocks. Using weeks of real data we
illustrate how the methodology works in detail, using it to
perform ’detective work’ to discover true clock performance,
which would otherwise be hidden by system effects.

Section II provides the background concepts of clock and
timestamping error, and system noise. The clock validation
methodology is then described in Section III. Section IV
defines the clocks we use to illustrate the possibilities of the
testbed and methodology, themselves given in Section V. We
conclude in Section VI.

II. CLOCKS, ERRORS, AND SYSTEM NOISE

A. Clock and Timestamping Errors

We denote true time, measured in seconds from some origin,
by t. Any real world clock C(t) inevitably suffers from errors.
The curves in Figure 1 show what 4 different clocks read, as a
function of true time, for example at time t = tk. The diagonal
line corresponds to a perfect clock.

The error or offset of C(t) at true time t will be denoted by

Offset: θ(t) = C(t)− t. (1)

Common terms used to characterise this error are skew, drift
and stability. Skew is used to refer to a clock which runs at
the wrong rate. For example it corresponds to the parameter



γ when θ(t) = C + γt, which may be a valid model for real
clocks over small time scales. The upper curve in Figure 1,
Cs(t), shows such a clock. More generally one can define
γ(t) = dθ(t)/dt. The clock Co(t) in the figure has zero skew,
but constant offset. Drift refers to the wandering of a clock
(or equivalently its rate), in particular over longer timescales
where offset is non-linear and cannot be described by a simple
skew, such as Cd(t) in Figure 1. Drift is strongly influenced
by temperature in real systems. The stability of a clock is a
measure of the variability of drift, and is usually measured by
means of the Allan Variance, a kind of time-scale dependent
variance measure (see [2] for details). For our purposes here
we use ’stability’ simply to refer to the non-linear part of the
clock offset.
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Fig. 1. Clock readings as a function of true time for 4 clocks. The realistic
case is the Cd(t) with non-linear drift.

Fundamentally, the role of clocks is to record the times at
which events of interest occur. In real systems, however, clocks
cannot be read precisely when desired. If tk is the time1 at
which a target event occurs, and t′k the time at which a clock
C(t) is read, then we define

Timestamping error: ξ(tk) = t′k − tk (2)

as the timestamping error relative to the target event.
When attempting to measure the time of an event occuring

at time tk, using a clock C(t), the timestamping and clock
offset errors naturally combine, to produce the total error

Total error: E(tk) = C(t′k)− tk

= θ(t′k) + t′k − tk

= θ(t′k) + ξ(tk). (3)

The total error and its components are illustrated in Figure 2.
When comparing a clock against another, rather than against
true time, the offsets and timestamping errors of both clocks

1True times will always be denoted by lower case t.
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Fig. 2. Total error, and its components of clock offset and timestamping
error, for a target event at true time tk .

combine (constructively or destructively), to produce a total
relative error

Total relative error: EC1,C2(tk) =
C1(t′k)− C2(t′′k) = E1(tk) + tk − (E2(tk) + tk) (4)

= θ1(t′k)− θ2(t′′k) + ξ1(tk)− ξ2(tk).

B. Clock Systems and System Noise

Clock systems consist of a hardware timing source such as
a crystal oscillator, a system to convert this to a readable clock
C(t), and (almost always) an external reference time source
R(t) which is deemed to be more accurate than C(t), together
with algorithms to synchronize C(t) to R(t).

The system underlying C(t) contributes both to offset and
timestamping errors. For example, software clocks on PCs
are ultimately software processes competing for resources.
This competition translates to delays which clearly create
timestamping errors whenever the clock is read. In addition
however, since the synchronisation algorithms are based on
timestamp processing, these delays also strongly influence the
offset error of the final synchronized C(t) itself.

This paper deals with software clocks defined in commodity
computer hardware. The question we address is how such
clocks can be evaluated, both in an absolute sense, and against
each other. System effects play a very important role here. We
therefore describe some of these in more detail. It is worth
noting that, in many cases, the reference clock is itself a
software clock built on commodity hardware, and suffers from
similar system issues. However this is not our main focus.
Such effects are subsumed within the final offset errors θ(t)
of the clocks. Instead we focus on how θ(t) may be measured
and interpreted through the ‘haze’ of system effects in the
host.

In PCs there are many examples of delays preventing
events being processed in real time. These include system



interrupts, the system scheduler, hardware/driver events and
packet queueing and processing. Collectively, we use system
noise to refer to any system induced delay which prevents
part of the clock hardware or software from executing when it
would like. Timestamping error, as one example, is therefore
a direct result of system noise.

Scheduling delays in particular are strongly influenced de-
pending on whether a process runs in user or kernel context. A
convenient way to gain access to the lower noise of the kernel
is to target events corresponding to packet events. We modified
Linux and FreeBSD kernels so that packet timestamps from
each clock used (described in more detail below) could be
taken in the kernel and made available to user level. We
do not present any measurement taken on Linux hosts in
this paper to provide consistent comparisons. Nevertheless, all
results obtained from FreeBSD kernels are similar to the ones
obtained using Linux hosts.

The definition of ‘system’ above includes components of
the reference clock itself. The important distinction for ref-
erence clocks is between hardware sources which are locally
connected to the computer, or software sources accessible over
a network. As we use each of these in this work, we provide
some background here.

Atomic clocks, GPS or CDMA receivers are examples of
local sources, which are used to build what is considered
to be accurate clocks. In such cases, a Pulse-Per-Second
(PPS) signal is made available via a serial port, along with
a time packet to signal which second is which on an accepted
timescale (like UTC). Here, a timestamp of R(t) is effectively
made when a pulse is processed.

Clocks synchronized over a network rely on packets trav-
elling between the host and a time server containing times-
tamps. In the client-server mode of operation, this involves
timestamping a packet as it leaves for the server, at the server,
and as it returns. The network delays are part of an ‘external
system noise’ and have a large impact. The Network Time
Protocol (NTP [3], [4]) and the accompanying infrastructure of
stratum-1 servers is the dominant solution today. Timestamps
are carried in UDP packets with formatted payloads.

III. TESTBED AND METHODOLOGY

The heart of the testbed, shown in Figure 3, is a host
computer where three different clocks are implemented. Two
of these (SW-NTP, TSCclock) are synchronized to a stratum-
1 NTP server, and the third (SW-GPS) to a locally attached
GPS. In addition, the Host exchanges UDP packets with a
Unix PC in each direction, in order to define target events
in the host to be timestamped. Finally, a high precision GPS
synchronized DAG3.6 series measurement card monitors, via
a passive hub, the UDP packets, as well as the NTP packets
exchanged between the Host and the NTP server. Note that,
although three clocks are supported, only one of SW-GPS and
SW-NTP can be used at any one time.

The central difficulty in evaluating a software clock is that
we do not have access to a perfect clock inside the system
against which to compare. The consequences of this are that
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Fig. 3. The testbed. UDP packets are timestamped by clocks inside the Host.

(i) we must compare against clocks which are themselves
imperfect, resulting in ambiguity in the estimated offsets, and
(ii) timestamping errors, as clock readings are not contiguous.
The second difficulty is greatly complicated by the fact that
timestamping errors can be highly variable due to system
noise. Our aim is to show how clocks may be evaluated despite
these intrinsic difficulties.

Our approach is to combine measurements made from two
different validation strategies with complementary strengths.
The external validation makes use of the DAG monitor in
order to provide a timestamp with low offset error, but high
timestamping error because the monitor is external to the host.
The internal validation makes use of a second clock inside
the host, which greatly reduces relative timestamping error,
but which has higher offset. By using these together, we can
in many respects analyse the clock performance as if we had
a validation clock with low total error.

Before describing the validation methodology in detail, we
first define the events we wish to timestamp. These are in
relation to an exchange of UDP packets, as shown in the (true)
time line of Figure 4. The target events are the instants at
which the last bit of the packet leaves or enters the network
interface card (NIC) in the host. More precisely, ta (resp. tf)
denotes the instant at which the last bit of the outgoing
(resp. incoming) UDP packet leaves (resp. arrives to) the NIC.
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Fig. 4. A (true) time line showing the key target event times inside the host
and at the DAG card. The components dh↑, dh↓ ≥ 0, of the minimum Host
round-trip time rh = dh↑ + dh↓ are shown.



A. External Validation

One approach to validation is to try to compare against a
reference clock, external to the host, which has very low offset
error. A DAG card [5], an industry standard high performance
passive packet timestamping card, is a good choice for this
role. Its on-board clock can synchronize to a GPS pulse-
per-second to around 200 [ns], and its hardware architecture
minimises its internal timestamping noise. As a result, the
offset error of a DAG timestamp D(t′) is considerable smaller
than any other error we can quantify, and for convenience we
assume it is zero below.

Figure 4 shows the DAG event times tga (resp. tgf ) corre-
sponding to the last bit of the outgoing (resp. incoming) UDP
packet passing by the DAG 2. We can now define the external
validation errors in terms of measured timestamps as

Outgoing external error: Xo = C(t′a)−D(tga
′) (5)

Incoming external error: Xi = C(tf′)−D(tgf
′). (6)

Although the DAG offset is very small, there is a significant
relative timestamping error in these external comparisons due
to system noise on the host side, and NIC packet processing
on the DAG side. This can be seen explicitly by setting the
offset error for the DAG to be zero in Equation 5, yielding

EC,D(tk) = θC(t′k) + ξC(tk)− ξD(tk)
≈ θC(tk) + ξC(tk)− ξD(tk)

since the change in clock error over short periods is typically
negligible.

The timestamping errors can be reduced by reducing system
noise. To do so we modified the FreeBSD 6.1 and Linux 2.6.18
kernels to allow kernel level timestamping for each of the
three clocks. In each system, packet timestamps made using
the existing system clock are made available to the libpcap
library at a generic place in the kernel. In the case of FreeBSD
for example, this is achieved by means of the BPF subsystem
common to all network drivers. Our modifications allow all
three clocks to make timestamps in these standard locations
in the kernel. In addition, for one of the clocks (the TSCclock)
we provide an alternative modification (marked as improved in
Figure 5) to allow timestamps closer to the driver and hence
to the target events.

The external comparison using a quality external time
reference allows the absolute performance of host clocks to be
determined, but only up to an error, due to system and NIC
noise, which can be large depending on system and network
load. In Section V-A we explain that there are in fact two
distinct impacts of this noise, one due to noise variability, and
the other to a constant term arising from the fact that ta < tga
and tf > tgf .

2Because the DAG card is designed to timestamp the first bit of each packet,
we apply a post-processing correction to obtain a timestamp of the last bit,
based on the packet size and network speed.

B. Internal Validation
A second approach to validation is to compare against

another clock inside the host. Such a clock may often have
an offset error greater or much greater than a quality external
reference such as DAG, but its availability inside the host is
a great advantage for reducing the impact of timestamping
errors. If the clocks can be timestamped very close together,
then t′k = t′′k in Equation 5, and the timestamping errors,
although non-zero, cancel yielding

EC,D(tk) ≈ θC1(tk)− θC2(tk),

where as before we have assumed that θ(t′k) ≈ θ(tk).
Our kernel modifications also support a Fair Compare mode

which allows back-to-back timestamping calls to be executed
when triggered by a target event such as a packet arrival.
In kernel context, this virtually eliminates the possibility that
the timestamping processes will be interrupted, dramatically
reducing system noise between two clocks’ readings, and
resulting in a tightly correlated timestamping errors.

We define the internal validation errors in terms of measured
timestamps as

Outgoing internal error: Io = C1(t′a)− C2(t′a) (7)
Incoming internal error: Ii = C1(tf′)− C2(tf′). (8)

The internal comparison implemented with the Fair Com-
pare strategy allows two host clocks to be cleanly compared:
even if timestamping errors are large and highly variable, they
will always cancel almost perfectly. The disadvantage is that
this comparison is relative only. It provides insight into both
the relative offset and stability of the two clocks, but can not
tell us their absolute performance with respect to true time.

IV. INTRODUCING THE CLOCKS

This paper is about clock validation methodology, and not
the characteristics or performance of any clock in particular.
However, a knowledge of the basics of the clocks implemented
in the testbed is necessary for an understanding of the results
to follow.

Two of the clocks in the testbed, SW-NTP and SW-GPS,
although differing significantly, are based on the standard
system software clock supported by the PC’s operating system.
The system clock S(t) is based around the periodic interrupt
cycle, of period typically 1[ms], driving process scheduling.
The interrupt cycle period is obtained by counting a number
of periods of an oscillator of low frequency, located on the
motherboard. The TSC (Time Stamp Counter) register records
the number of CPU cycles starting at boot time. The system
clock uses it to interpolate times between interrupts, but it
is not the fundamental basis of the clock. The system clock
derives a nominal rate at boot time, and then adjusts itself
through three mechanisms: reset, skew and phase, informed by
filtering timestamps through the ntpd daemon, with the aim
of driving θ(t) to zero. Two important features of the ntpd
generated system clock follow from this: it actively adjusts
clock rate, and it provides an absolute time clock only. All
timestamps are in timeval format (with 1µs resolution).
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Fig. 5. Bandicoot, external error for both directions underlying the differences between standard and improved timestamping strategies.

1) The SW-NTP Clock: Present in most operating systems,
the SW-NTP clock (with ntpd) works in client-server or
broadcast mode, processing timestamps transported to and
from a NTP server (or servers) in NTP packets (Fig. 3).
Broadcast mode is typically used when the server is on the
same LAN whereas the client-server mode is typically used
in other cases. As the incumbent, the system clock benefits
from existing kernel implementations and the standard libpcap
interface, which timestamp packets in the kernel and make
them available at user level.

2) The SW-GPS Clock: In the case of the SW-GPS, ntpd
works in broadcast mode as above, but processes timing
information arriving via serial port from a GPS receiver.
Configuring the system to perform this reliably can be non-
trivial. We achieved it using two drivers. The ‘atomic driver’
receives the pulse per second (PPS) output of the GPS (a
PPS peer for ntpd), and the Palisade driver (candidate peer)
receives a packet with timing information emitted after the
pulse. We use a Trimble Acutime 2000 GPS receiver, whose
pulse is synchronized to UTC to within 50 nanoseconds.
However, the offset error is greater than this due to host system
noise and processing within ntpd.

Since the SW-GPS clock uses exactly the same active
control algorithms in ntpd as the SW-NTP clock does, it
also provides an absolute time clock only. To calculate time
differences, one must subtract two absolute times.

3) The TSCclock: The TSCclock [6], [2], [7] is based on
the TSC oscillator only. Contrary to the SW clocks, it is built
around obtaining stable long-term clock rate estimates. The
TSCclock does not actively vary its rate to track drift and
provides actually two clocks, one for time differences, and
one for absolute time.

The synchronization algorithm operates in client-server
mode. Each round-trip generates four timestamps, two in
timeval format from the server, and two raw TSC times-
tamps taken at the host. These stamps (4-tuple of timestamps)
are used to provide an estimate p̂ of the average CPU oscillator

period p. An uncorrected clock can then be defined as Cu(t) =
p̂ ∗ TSC + K, where K is an estimate of the offset which is
not updated. Instead, an estimate θ̂ of the error in Cu(t) is
updated at each new incoming stamp. The two clocks are then:

Cd(t) : ∆(t) = Cu(t2)− Cu(t1) = ∆(TSC) ∗ p̂, (9)

Ca(t) : Ca(t) = Cu(t)− θ̂ = p̂ ∗ TSC + K − θ̂. (10)

The difference clock Cd(t) does not incorporate the correction
θ̂, so the constant K cancels exactly. Hence, Cd(t) directly
benefits from the underlying rate stability of the TSC over
small to medium timescales, and is not perturbed by estimates
of drift, which are irrelevant over those scales. For example,
a rate stability of 1 part in 107 over a RTT of 1 [sec] yields
an error of only 0.1µs.

Measuring absolute time requires that drift be tracked.
Hence, θ̂ is incorporated into the definition of Ca(t), which
results in short term variability since estimates must be based
on a limited time window, and used even if not ideal (for
example due to congestion). However, by not changing K,
instead applying a correction only when reading, the absolute
clock avoids varying its rate to track drift, which improves
stability.

A more detailed account is given in [6], [2]. The resolution
of the TSCclock is tied to that of the CPU, and is around
1[ns].

V. COMPARING CLOCKS

In this section we show how the internal and external
comparisons can be used together to learn about clock per-
formance. We begin with an introduction to the external case,
and show how it enables us to learn about the nature of system
noise, which in turn gives insights into the clock. In Section V-
B we show what the methodology is capable of through a
series of examples using real data. Throughout we use the
clocks described in the previous section, but with a strong
emphasis on generic aspects.
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Fig. 6. Bandicoot noise measured with standard and improved timestamping strategies.

A. External Validation and System Noise
Figure 5 shows time series and associated histograms of

an external comparison of the machine bandicoot over a 100
minute period, for both incoming and outgoing directions.
Bandicoot is a 600Mhz Pentium processor host, running
FreeBSD 6.1 and using a 3Com 10/100 Mbps network inter-
face. The clock being validated is the TSCclock, for which
we have both standard and improved kernel timestamping
available. Both are shown for comparison.

Consider first the results using standard timestamping. The
timeseries show an error of the order of 200µs in each
direction. The immediate problem is that this number is only a
bound on the clock offset. We do not know how much of it is
due to the true offset, and how much to the timestamping error
inherent in the external comparison. However, there is a clear
difference in the time series in the two directions: the outgoing
direction exhibits more variability. This is confirmed by the
histograms: The Inter-Quantile Range (IQR) of the outgoing
comparison (38 µs) is almost four times that of the incoming
one (10 µs). However, each histogram is summarising the error
of the same clock, seen by the same DAG reference! Extreme
programming bugs aside, it is not possible for the offset of the
clock to be consistently different for incoming and outgoing
packets. We are led to conclude that the timestamping noise is
in fact larger on the outgoing side, by an amount of the order
of 30 µs. This is important as it indicates that it is better to
work with data on the incoming side. However, it still does not
help us to determine the actual magnitude of the timestamping
errors for each direction and hence unambiguously recover the
clock offset.

The above observations and conclusions hold for the im-
proved timestamping also. The difference is that errors have
decreased in both directions, particularly on the outgoing di-
rection, compared to the standard case. Clearly the ‘improved
timestamping’ has earned its name, but again, this does not
give us a means to remove timestamping error. However, as
we now show, using both directions simultaneously does give
useful insight into the absolute value of timestamping error.

Using pairs of sent and received UDP packets, exchanged as
indicated in Figure 4, the (minimum) Host Round-Trip Time
(Host RTT) rh is defined as the sum of the two minimum
one-way delays between the Host and the DAG card:

rh = dh↑ + dh↓ = (tga − ta) + (tf− tgf ).

In terms of available timestamps, the measured Host RTT

Rh is expressed as:

Rh = (D(tga
′)− Cu(t′a)) + (Cu(tf′)−D(tgf

′)). (11)

Using the low total error of the DAG timestamps we set
D(t′) = t, and ignore noise on the NIC side, yielding

Rh = tga − Cu(t′a) + Cu(tf′)− tgf
= tga − (E(ta) + ta) + (E(tf) + tf)− tgf
= (tga − ta) + (tf− tgf )− E(ta) + E(tf)

= rh + θ(tf)− θ(ta) + ξ(tf)− ξ(ta).

The RTT of a UDP packet pair is much smaller than two
successive updates of any clock we study. Hence the clock
offset remains unchanged during a packet pair exchange:
θ(tf) = θ(ta). As a result, the clock offsets of the timestamps
in each direction cancel leading to

Rh = rh + ξ(tf)− ξ(ta), (12)

that is the measured Host RTT is composed of the true Host
RTT and the timestamping error on both directions.

There is an important asymmetry between the two direc-
tions. On the receiving side, the timestamping of an incoming
packet can not be triggered before the packet actually arrives.
This guarantees that tf ≤ tf

′, and so ξ(tf) ≥ 0. In the
sending direction there is no such natural ‘causality constraint’,
however it is important to ensure it via an appropriate imple-
mentation. Failure to do so could result in causality failing in
the empirical timestamping sense, resulting in erroneous offset
estimates. A causality respecting implementation guarantees
that ta ≥ t′a and hence that ξ(ta) ≤ 0. Equation 12 then takes
the form of a positive noise on top of a positive rh, and rh

can be measured using minimum filtering.
Using the trace from bandicoot as before, Figure 6 shows

the Rh calculated from Equation 11 for the same period of 100
minutes previously used. For both the standard and customised
timestamping methods, the Host RTT is consistent with the
picture given above, a constant minimum plus a positive noise.
The figure then gives us both a measure of rh, which is the
smallest value the sum of the timestamping errors can take, and
a measure of its variability via the IQR of the histograms. We
have succeeding in isolating timestamping noise from offset,
but we cannot do the converse, because the individual noises
in each direction still (inevitably) elude us. Nonetheless, we
have gained considerable insight into the size and nature of
the system noise as it affects external validation.



0 5 10 15

0.1

0.15

0.2

Minutes

[m
s]

Maxwell Tastiger

50 100 150
0

0.1

0.2

0.3

0.4

0.5

Tastiger: med= 77.5 iqr= 3.4 [mus]

[mus]
100 150 200

0

0.02

0.04

0.06

0.08

Maxwell: med= 100 iqr= 69.2 [mus]

[mus]

Fig. 7. Comparison of system noise between maxwell and tastiger measured with improved timestamping strategy.

We have seen that the variable part of the relative times-
tamping error superimposes onto the variability of θ(t) itself,
resulting in a broadening of the observed histogram for the
external error. In fact the relative timestamping error also has
a constant term, which creates an impact of a different kind.
Assuming D(t′) = t, and assuming minimal timestamping
(and NIC) noise for simplicity, the external comparisons in
each direction are respectively Xo = θ(ta) − dh↑ and Xi =
θ(tf) + dh↓. Now let c be a constant. We can write Xo =
(θ(ta)+c)−(dh↑+c) and Xi = (θ(tf)+c)+(dh↓−c), which
shows that the one-way NIC to DAG delays dh↑ and dh↓,
as they cannot be independently measured, create an inherent
ambiguity for the offset: it can only be known up to a constant
c. It is easy to show that c is bounded by c ∈ (−dh↑, dh↓)
which has a width dh↓−(−dh↑) = rh. Although rh is typically
of the order of only a few tens of microseconds, the ambiguity
places a limit on the ability of the external comparison to
measure the true offset, in particular the average clock error.
In practice, since dh↑, dh↓ are unknown but each bounded by
rh, θ(t) is only known up to c ∈ (−rh, rh). In summary,
there are two kinds of limitation in external comparisons: a
variable component which broadens the measured histogram
of θ, and a constant component which shifts the histogram by
an amount which is unknown, but bounded by 2rh, which is
measurable.

We conclude by showing how understanding the system
noise can help configure the testbed itself. We use two recent
PC systems called maxwell and tastiger. These machines
have hardware of the same generation and have equivalent
performance. They each run the same operating system (our
modified FreeBSD 6.1). The only key difference existing
between maxwell and tastiger concerns their network card
and corresponding driver. Maxwell is equiped with a Broad-
Com 5157 Gigabit Ethernet network adapter embeded in its
motherboard, whereas tastiger uses a 3Com 10/100 Mbps PCI
network adapter.

We compare Rh for these two hosts using the improved
timestamping implementation. We collected UDP packets
timestamps during the same period on both hosts so that they
share the same network conditions. Despite the many similar-
ities in the machines, Figure 7 shows that the results are very
different. Tastiger exhibits an extremely stable timestamping
error with an IQR of Rh of only around 3 µs, whereas the
histogram corresponding to maxwell is spread over 70 µs.

Tastiger and maxwell respectively exhibit the best and

worst examples of system noise we have seen. This example
highlights the need to carefully set up the testbed, in particular
to select a good NIC/driver combination, in order to keep the
timestamping error as low as possible.

B. The Methodology at Work

We begin with the comparison of the two clocks synchro-
nized over a network, SW-NTP and the TSCclock. For this
purpose bandicoot was configured to support each of these.
The SW-NTP is synchronized to a stratum-1 server, located
on the same LAN, that broadcasts NTP packets once every 16
seconds. The TSCclock is synchronized to a different stratum-
1 server located 2 hops away, receiving time packets every 2
seconds.

Using the incoming direction, figure 8 shows the internal
comparison Ii for the SW-NTP and TSCclock over a period
of two weeks. The time series, corresponding to the difference
between the offsets of the two clocks (recall Equation 8) shows
large oscillations in a ±1 millisecond band, as confirmed
by the IQR of the corresponding histogram. Such a spread
indicates that the offsets of the clocks differ significantly. We
cannot tell however, if one or the other, or both, clocks are
responsible.

To obtain independent information on each clock separately,
we turn to the external comparison. Figure 9 shows the
comparison with DAG for each clock. The time series clearly
indicate that SW-NTP is overwhelmingly responsible for the
magnitude of the relative offset error seen in the internal com-
parison. In fact the shape of the internal comparison clearly
follows that of Xi(t) for SW-NTP, with a similar oscillation
within ±1 millisecond band and an IQR of 545µs. On this
scale the TSCclock remains close to the DAG clock, with an
IQR for Xi of only 22µs. We measured the corresponding IQR
of the bidirectional noise Rh to be in the order of 37µs. As this
is small compared to the IQR for SW-NTP, it follows that the
histogram of Xi for SW-NTP is an accurate view of its offset
histogram. On the other hand, it is difficult to make detailed
conclusions in the case of the TSCclock as the timestamping
error may be of the same magnitude as the observed external
error. During this capture rh was around 10µs, corresponding
to an ambiguity of 2rh = 20µs in the median values for both
clocks.

We now compare the TSCclock and SW-GPS clocks, using
another host, potoroo. Potoroo is similar to bandicoot in
terms of hardware (same generation, comparable processor
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Fig. 8. Internal comparison between SW-NTP and TSCclock (captured on bandicoot).
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Fig. 9. External comparison between SW-NTP and TSCclock (captured on bandicoot).
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Fig. 10. Internal comparison between SW-GPS and TSCclock (captured on potoroo).
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Fig. 11. External comparisons for SW-GPS and TSCclock (captured on potoroo).

speed and same network card) and operating system (modified
FreeBSD 6.1). Results obtained for the TSCclock should
therefore be consistent with those obtained with bandicoot
as far as system noise is concerned. However, as Potoroo is
configured to use the SW-GPS system clock (as described in
Section IV), the clock comparisons should be very different.

The internal comparison, shown in Figure 10, shows the
SW-GPS and TSCclock to be close to each other. The IQR
of Ii is only 14µs, indicating that the two clocks offsets vary
similarly most of the time. However, the time series show

several periods where the clock behaviours diverge somewhat
(for example during day 7). We are then interested in knowing
if one of the two clocks is responsible for the increase in Xi

or if both of them contribute to it.

The external comparisons are shown in Figure 11. Consis-
tent with the internal conclusions, the histograms show that,
in terms of clock stability, the two clocks behave similarly,
with IQR for Xi values which are close to each other: 15µs
for SW-GPS and 21µs for the TSCclock. In fact, since rh was
measured for this host as being around 10 µs, the external error
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Fig. 14. Internal comparison between SW-GPS and the difference clock.

is consistent with the hypothesis that one of the clocks has an
IQR close to zero (very high stability), to which timestamping
noise has been added. However, it is impossible to verify
this. The difference between the clocks is more pronounced in
terms of the constant component of their offset. The TSCclock
is slightly ahead compared to the SW-GPS (a median value
of 37µs compared to 13µs). However, because the IQR of
Rh is around 23µs that is, larger than the IQR of the external
comparison for both clocks, we cannot conclude with certainty
which one is worse.

The time series in Figure 11 also gives information about
the different events occuring during the capture, as noted from
the internal comparison above. Since they are present in the
internal comparison we know they are not due to system noise,
and since they match (mainly) the external comparison for
the TSCclock but not for SW-GPS, we deduce that they are
(mostly) due to the TSCclock. We investigated the log files of
all machines involved to understand what the cause of such
a variation in clock offset could be. These events correlate
with periods during which the stratum-1 NTP server, to which
the TSCclock synchronizes to, lost synchronization to its own
GPS signal. We believe that this was due to a hiccup in
connectivity arising from disruptive building work on the roof

where the GPS antenna is located. Without a good source of
synchronization, the TSCclock offset error naturally increased,
explaining the additional drifts observed.

Because the SW-GPS and the TSCclock have offsets which
follow each other so closely, it is worth taking a closer look
to examine smaller scale behaviour. Figure 12 focuses on an
8 hour window showing the internal comparison Ii during
the first day of the capture above. We observe oscillations in
the time series with a period of about 20 minutes. Again, we
want to know which clock is responsible for such behaviour.
Figure 13 presents the external comparison over the same
period. In this case we see that both clocks are responsible as
both have the oscillations. Again, the phenomenon cannot be
due to system noise as it is present in the internal comparison
also. A comprehensive study of the testbed environment finally
led us to discover that these oscillations can be matched
with the pattern of temperature variations in the temperature
controlled machine-room where potoroo is installed. These
oscillations are thus due to temperature effects impairing the
quality of both clocks.

Finally, we give an example using the difference clock
Cd(t). Using the incoming UDP packet events, we compute
UDP packets inter-arrival times using both SW-GPS and



the difference clock. We compare inter-arrivals measurements
for corresponding packets and present them in Figure 14.
As confirmed by the histogram, the errors mainly fall in a
narrow ±1µs band. Since 1 µs is the resolution of SW-GPS
as it uses the timeval data structure holding a standard
system timestamp, we can not interpret the errors in this band,
beyond indicating the two clocks behave (almost) identically.
However, as seen in the time series, a small number of spikes,
of magnitude up to 10 µs, appear throughout the trace. By
the way in which the difference clock is constructed (this
was checked by looking in detail at internal algorithm data),
we know that it cannot be responsible for these spikes. We
are therefore able to diagnose their origin as the SW-GPS
clock and/or system call. Note that in this case the external
comparison would not have provided any additional insight,
as the spike amplitudes are far smaller than the timestamping
noise polluting the DAG timestamps.

VI. CONCLUSION

We presented a testbed and an associated methodology to
evaluate software clocks running on computer systems. The
use of the system was illustrated in detail using three clocks
with very different characteristics, in three computers, two
different reference clocks, and weeks of live data.

The system is capable of providing measurements, accu-
rate to a few tens of microseconds, on clock offsets, clock
stability, and also system noise polluting clock timestamps.
The methodology is in fact a combination of two simpler
methodologies. One is external, based on comparison against a
highly precise clock located outside the system. We use a high
precision GPS synchronized DAG card. The other is internal,
based on comparison against a second clock inside the host.

Modified kernels (which will be made generally available)
were made to reduce system noise between clock times-
tamps to very low values, allowing in some cases meaningful
comparisons to be made right down to the (system) clock
resolution of 1µs. Through comparing and contrasting internal
and external results, we showed how the disadvantages of
each could be substantially alleviated, allowing the origin of
anomalous measurements to be tracked down and reliably
attributed to their true cause: system noise, the reference clock,
or the clock under study. The system provides a well defined
and comprehensive method to accurately benchmark software
clocks under real conditions, and should be invaluable to
the development of new clocks, which are needed for many
distributed computing and networking applications.
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