
Ten Microseconds Over LAN, for Free

Julien Ridoux, Darryl Veitch
ARC Special Research Center for Ultra-Broadband Information Networks (CUBIN)

An affiliated program of National ICT Australia, EEE Department
The University of Melbourne, Australia
{j.ridoux, d.veitch}@ee.unimelb.edu.au

Abstract

The status quo for timestamping in PCs is ntpd, which
is accurate to 1[ms] at best. For precision applications
this is inadequate, but it is a low cost solution which
suits many generic applications. IEEE-1588 provides
mechanisms for sub-microsecond accuracy, but to achieve
this more hardware is needed. We have developed the
TSCclock, which gives performance between these two,
around 10 microseconds on LAN, sub millisecond beyond,
but using commodity hardware. We begin detailed bench-
marking of the TSCclock to show its potential as an inex-
pensive yet accurate software clock, which could be used
with IEEE-1588 for LANs, but has wider applicability as
a replacement to ntpd.

1 Introduction

Clock performance, like any system, is subject to trade-
offs of cost and ease of use. Consider the status quo
for software clocks in PCs, the ntpd daemon [1], which
is used to synchronise system software clocks via a time
server hierarchy across networks. It is widely recognised
that ntpd is inadequate for precision timekeeping, being
limited to around 1[ms] at best (see figure 2). However,
for many applications this is sufficient, and it does enable
a time server to be inexpensively accessed over networks
ranging from LANs to the Internet.

Over LANs, IEEE-1588 implementations provide for
far more precise synchronisation, at the microsecond level
to well below if hardware support is provided, such as
when a hardware clock is embedded into a Network Inter-
face Card (NIC). This large improvement in terms of clock
performance brings with it two main constraints. First, the
additional hardware comes at a financial cost, and makes
legacy hardware incompatible with IEEE-1588. Second,
since the IEEE-1588 protocol must be implementable in
hardware, its design has to remain relatively simple. This
is a fundamental constraint restricting the usage of the
IEEE-1588 protocol to LAN islands.

There is a wide gap between the quality and constraints
of these two timing solutions, ntpd and the hardware based
IEEE-1588. This leaves open the prospect for a solu-

tion which lies in between that would be reliable, able
to provide synchronisation within or across LANs, whilst
remaining inexpensive and compatible with legacy hard-
ware. Over the last few years ([2, 3, 4, 5, 6]) we have
developed a solution which takes this middle ground: ex-
ploiting the relatively high stability of commodity hard-
ware to provide a robust clock with accuracy well above
that of the ntpd solution, whilst retaining the low cost and
ease of use of network based synchronisation. The TSC-
clock has as its hardware basis the TSC register, avail-
able in common architectures, which counts CPU cycles.
Its synchronisation algorithms, based on a client-server
paradigm, are effective in filtering out delay jitter from
network elements and the host system, and we use selec-
tive kernel modifications to dramatically improve times-
tamping performance at zero dollar cost.

To support the first release of the TSCclock over Linux
and BSD systems, we are performing a set of comprehen-
sive benchmarking studies. Using weeks of live data, we
give preliminary results showing performance over Ether-
net LANs to be around 10µs, a noise level essentially set
by the jitter inherent in the multi-tasking operating sys-
tem. Whilst not being able to compete with more hard-
ware oriented solutions over LAN, this raising of the bar
by an order of magnitude nonetheless opens up numerous
possibilities for applications where cost is a factor.

2 The TSCclock

The TSCclock [7, 3, 2] leverages the fairly high sta-
bility of commodity oscillator hardware, specifically the
CPU oscillator, whose cycles are conveniently counted
and ready accessible via the TSC register in common PC
architectures. Contrary to the ntpd based software clocks,
the TSCclock does not actively vary its rate to track drift
in a feedback loop. Instead, it is built around obtaining
stable long-term clock rate estimates using a feedforward
approach. This enables it to provide two clocks, one for
time differences, and one for absolute time. This approach
circumvents the usual tradeoff problem, for example in
PID controllers, whereby gain parameters which improve
short term tracking do so at the detriment of rate stability
over the time-scales at which tracking operates.

The synchronisation algorithm operates in client-server

2007 International IEEE Symposium on Precision Clock Synchronization (ISPCS)
for Measurement, Control and Communication
Vienna, Austria, October 1-3, 2007.

1-4244-1064-9/07/$25.00 ©2007 IEEE 105

Unix PC

NTP Server
Stratum 1

GPS
Receiver

Hub

Host DAG
Card

PPS Synchronization Bi-directional NTP flow Bi-directional UDP flow Time Request

UDP Sender
& Receiver

TSCclock

SW-GPS

SW-GPS DAG-GPS

External MonitorInternal Monitor

SW-NTP

Figure 1. Testbed.

mode. Each round-trip generates four timestamps, two
in timeval format from the server, and two raw TSC
timestamps taken at the host. These timestamp 4-tuples
are used to provide an estimate p̂ of the average CPU
oscillator period p. An uncorrected clock which does
not take clock drift into account can then be defined as
Cu(t) = p̂ · TSC + K, where K is an estimate of the ini-
tial offset which is not updated. Instead, an estimate θ̂ of
the error in Cu(t) is updated at each new incoming stamp.
The two clocks are then:

Cd(t) : ∆(t) = Cu(t2) − Cu(t1) = ∆(TSC) · p̂, (1)

Ca(t) : Ca(t) = Cu(t) − θ̂ = p̂ · TSC + K − θ̂. (2)

The difference clock Cd(t) does not incorporate the cor-
rection θ̂, so the constant K cancels exactly. Hence,
Cd(t) directly benefits from the underlying rate stability
of the TSC over small to medium timescales, and is not
perturbed by estimates of drift, which are irrelevant over
those scales. For example, a rate stability of 1 part in 107

over a RTT of 1 [sec] yields an error of only 0.1µs.
Measuring absolute time requires that drift be tracked.

Hence, θ̂ is incorporated into the definition of Ca(t),
which results in medium term variability since estimates
must be based on a limited time window, and used even
if not ideal (for example due to congestion). However, by
not changing K, instead applying a correction only when
reading, the absolute clock avoids varying its underlying
rate to track drift, which improves stability and enables
meaningful sanity checking.

The key problem in synchronising clocks over a net-
work is the variable delays due to queueing in network
elements, and interrupt, queueing and processing delays
in the host and/or server hardware and operating systems.
Whereas in systems using the Precision Time Protocol
(PTP, ie. IEEE-1588), these effects can be reduced to near
zero by the use of boundary clocks which are typically
hardware based (see however [8]). The TSCclock is de-
signed to be robust to large and highly variable delay jit-
ter as it receives its timestamps via packets which travel

across the network and back. Thus, apart from the feed-
forward design described above, the entire structure of the
TSCclock synchronisation algorithms is aimed at com-
pensating for this jitter successfully, that is both accurately
and robustly. If there were no jitter, then synchronisation
reduces to the calculation of propagation delays, which
apart from path asymmetry issues (which are intrinsic and
cannot be overcome by any algorithm), is trivial.

The TSCclock performs non-linear filtering based on
round-trip times. It uses a simple but empirically very
well justified model of round-trip times, namely a mini-
mum constant plus positive random noise. This approach
is extremely effective in identifying those packets which
contain the best (smallest) network delays. The estimators
of p̂ and θ̂ above are based on these together with window-
ing for variance reduction. More precisely, the excess of
RTT above an estimate r̂ of the minimum RTT r is used
as a basis of rejection of distorted timestamps when mea-
suring p̂, and as a weight when averaging estimates made
over several packets in the case of θ̂. A more detailed ac-
count is given in [7, 3], including how to deal with changes
in the minimum delay level, which can occur for example
following changes to layer 2 or 3 routing. The resolution
of the TSCclock is tied to that of the CPU, and is around
1[ns].

3 Testbed

Any software clock running on typical computer archi-
tecture and operating systems has to deal with system de-
lay created by resource sharing and competition among
running processes. As a general term, we refer to these
delays as system noise. System noise affects the times-
tamping of any event of interest by delaying the reading
of the clock. In other words, timestamps of events used to
synchronise a software clock (arrival time of a reference
time packet for example) or events used to assess clock
performance, are all affected. Based on this simple obser-
vation, we designed a testbed to gain insights into system
noise and so distinguish timestamping errors from actual

106

0 5 10 15 20 25 30 35 40

−1

−0.5

0

0.5

1

Days

[m
s]

TSC
err

SW−NTP
err

Figure 2. Performance of a ntpd based SW clock (resp. TSCclock) using servers inside (resp. out-
side) the LAN.

0 12 24 36 48 60 72 84
−15

0

15

45

Hours

[µ
s]

TSC
err

10 20 30
0

0.005

0.01

0.015

[µs]

TSC
err Median 16.7

IQR 7.8

Figure 3. TSCclock synchronised to stratum-1 server on LAN, polling period 256s, Left: clock
errors using external DAG comparison, Right: histogram.

clock errors.
Figure 1 shows our testbed, consisting of a PC host

running three clocks: SW-GPS (ntpd synchronised to lo-
cal GPS PPS), SW-NTP (ntpd synchronised to stratum-1
NTP servers), TSCclock (synchronised to stratum-1 NTP
servers), and a precision external reference (GPS synchro-
nised DAG card).

To assess the performance of each of the three clocks,
UDP packets are exchanged between the Host and another
Unix computer on the network. Packets are sent from the
host monitor and for each packet sent, the Unix PC replies
with a similar UDP packet. This packet exchange consti-
tutes the series of events used to trigger the reading of each
of the clocks and translates into several series of times-
tamps which can be compared.

The comparison of the timestamp time-series made
available by our testbed is twofold and we refer to it
as the Internal and External comparisons. The Internal
comparison relies on slight modifications to the Linux
and FreeBSD kernels for the timestamping of each in-
coming or outgoing UDP packet. The main objective of
these modifications is to be able to timestamp each packet
event using two clocks in a “back to back” fashion. The
packet timestamping is done using the packet capture li-
brary libpcap. The modifications applied to the Linux

and FreeBSD kernel are different and driven by the ac-
tual implementation of libpcap on these two platforms.
On FreeBSD, the call to timestamping functions takes ad-
vantage of the Berkeley Packet Filter subsystem, but our
modifications slightly improve the timestamping location
for each of the clocks, moving them slightly closer to the
network card driver code. On Linux kernels, timestamps
are taken in the kernel, right after the driver code returns
and are exported using RAW sockets opened by libpcap.

We carefully implemented these new and quasi-
simultaneous timestamping calls so that timestamps of
the same event obtained from different clocks share the
same system noise. As a result, the internal compari-
son provides timestamps for which the clocks share the
same timestamping error. When comparing correspond-
ing timestamps from two different clocks the timestamp-
ing error cancels, revealing the relative performance of the
two clocks under study. However, although free of times-
tamping error, this comparison does not provide an indi-
cation of absolute performance as none of the clocks used
can be considered as references.

To quantify the clocks absolute performance, a trusted
reference clock is needed. For the purpose of packet
timestamping we use a 3.7GP DAG card ([9]). The DAG
card embeds its own hardware clock synchronised us-

107

0 3 6 9 12 15 18 21 24 27 30 33
−40

−10

0

10

40

Hours

[µ
s]

Cdiff

−20 −10 0 10 20
0

2

4

6

8

x 10
−3

[µs]

Cdiff Median −1.4
IQR 18.2

Figure 4. TSCclock synchronised to stratum-1 server two hops away, polling period 16s, internal
in-host comparison against SW-GPS.

16 64 256 16 64 256

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

ServerLoc

Polling Period [sec]

[m
s]

16 64 256 16 64 256
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

ServerNear

Polling Period [sec]

[m
s]

16 64 256 16 64 256

−1

−0.5

0

0.5

1

1.5

2

2.5

ServerFar

Polling Period [sec]

[m
s]

SW−NTP
TSCclock

Figure 5. TSCclock versus ntpd for three polling periods and three time servers, left to right: LAN;
same campus; across the continent.

ing a GPS Pulse-Per-Second input and timestamps pack-
ets at hardware level. Using this accurate and low sys-
tem noise timestamping device, we consider the series of
timestamps obtained to be our absolute time reference.

Combining both Internal and External comparison we
are able to give a lower bound on system noise at the
host. We are also able to provide bounds on, as well as re-
move, the inherent ambiguity of the results due to the net-
work asymmetry existing in the exchange of NTP packets.
More details, a precise description of the methodology as-
sociated to the testbed, and the analysis of operating sys-
tem noise and path asymmetry, can be found in [6].

4 Experimental Results

Figure 2 motivates our work. It shows ntpd perfor-
mance under ideal conditions: the SW-NTP clock run-
ning on the host being synchronised to a stratum-1 peer on
the same LAN. Despite this, its absolute error (given by
the external comparison using DAG packet timestamps)
varies in a 1[ms] band. In contrast, the TSCclock, syn-
chronised to a stratum-1 NTP server outside the LAN, is
an order of magnitude smaller.

From the perspective of PTP, we are interested in see-
ing how well the TSCclock can perform in a LAN envi-
ronment. Figure 3 gives the absolute performance of the

TSCclock over 92 hours, measured externally via DAG. In
this experiment, the TSCclock is synchronised to a GPS
synchronised stratum-1 server located on the same LAN.
Again, the TSCclock relies on NTP packets to exchange
time information with the server and to synchronise to
it. The inter-quartile range of this external comparison
is only 7.8µs, and the median error, once path asymme-
try effects (measured at 36µs in our testbed) have been
removed, is only (17µs). While this performance is still
far from what is achievable using dedicated hardware so-
lution, we believe that few software solutions reach this
level of accuracy. We also emphasize the fact that this per-
formance is achieved using a server that itself suffers from
large system noise in timestamping. They are not created
in the kernel and as such, suffer from delays and inac-
curacy. We anticipate significant performance improve-
ments if IEEE-1588 boundary clocks were used instead of
stratum-1 NTP servers.

Next (figure 4), we perform a direct comparison against
a GPS synchronised software clock in the same host, using
a modified kernel. We observe that the two clocks agree
to less than 2µs with a spread of 18µs over the 33 hours.
While this experiment is a strong challenge for the TSC-
clock (the quality of each clock synchronisation source
is radically different) the TSCclock performance is com-

108

parable to that of the GPS synchronised server. Again,
using a IEEE-1588 clock to synchronise the TSCclock in-
stead of an NTP server should definitely improve its per-
formance and reduce its variability. However, a precise in-
vestigation of the TSCclock absolute performance at this
level is made difficult because it is partially hidden by the
host system noise (usually of the order of 20µs). This is a
validation issue (the testbed is not yet perfect), not a prob-
lem with the TSCclock itself.

Finally, figure 5 gives some insights into the respec-
tive absolute performance of the TSCclock and SW-NTP
as a function of two parameters. First, the quantity of raw
synchronisation information as controlled by the polling
period to the server, and second, the distance to the server
measured in hops. As the hop count increases the delay
distribution moves to higher values, and the path asym-
metry also (very likely) increases. For each experiment,
the TSCclock and ntpd share the same stream of NTP
packets. In each plot, the thick black lines show median
errors, and the surrounding lines give [2, 25, 75, 98] error
percentiles over almost 2 days. ServerLoc is a stratum-
1 server installed two hops away from the host PC run-
ning both clocks with a minimum Round Trip Time (RTT)
around 0.38ms. ServerNear is a stratum-1 server located
5 hops away with a minimum RTT measured at 0.89ms.
Finally, ServerFar is a stratum-1 server located 1000km
away, 10 hops away (as observed over stable routes) for
which we measured a minimum RTT of around 14.2ms.

For each clock we observe the expected qualitative be-
havior: as the polling period and the distance to the refer-
ence clock increase, the performance degrades. In this ex-
periment the TSCclock performs clearly better than SW-
NTP. The variability of the synchronisation obtained with
the TSCclock is much smaller than that obtained with SW-
NTP. Also in each case, the median value of the abso-
lute performance of the TSCclock is closer to the refer-
ence given by the DAG card and much more stable as the
polling period increases. This illustrates the potential of
the algorithm to go well beyond the LAN setting with only
a modest performance penalty.

5 Conclusion

So far we compared the TSCclock performance to both
SW-NTP and SW-GPS clocks as they are the most widely
deployed ones at this time. These early results help us
gain understanding the performance of the TSCclock and
highlight points of possible improvement. A well-known
obstacle to improvement of the TSCclock performance re-
mains the system noise present on NTP servers that are
usually simply commodity hardware running ntpd. One
of the next steps of this work is to take advantage of hard-
ware clocks as specified by the IEEE-1588 and observe
the performances of the TSCclock under conditions where
noise and asymmetry are reduced. We expect it to perform
very well because, although its algorithms are designed to
cope with high levels of jitter, they are not ’optimised’ for

this. Without any need for tuning, they will immediately
perform close to optimality should they be presented with
a very low jitter environment.

Another obvious comparison would be to compare the
performance of the TSCclock with the PTPd solution [8].
While having different objectives, we believe the TSC-
clock would be a robust alternative to PTPd in providing
accurate software clock on LANs. In the future, we also
will investigate the possibility of using the TSCclock as
a boundary clock. The promising performance observed
when comparing the TSCclock against SW-GPS calls for
a modified version of the TSCclock capable of process-
ing GPS input. Without being able to reach the level of
accuracy offered by dedicated hardware clock, we believe
this solution would offer an inexpensive alternative to net-
work applications requiring accuracy in a 10µs range, or
even below.

References

[1] D. Mills, “Network Time Protocol (Version 3) specifica-
tion, implementation and analysis”, IEFT, Network Work-
ing Group, RFC-1305, March 1992, 113 pages, papers in
appendix.

[2] A. Pásztor and D. Veitch, “PC Based Precision Timing
Without GPS”, in Proceeding of ACM Sigmetrics 2002 Con-
ference on the Measurement and Modeling of Computer Sys-
tems, 15-19 June 2002, pp. 1–10, Del Rey, California.

[3] D. Veitch, S. Babu, and A. Pásztor, “Robust Synchroniza-
tion of Software Clocks Across the Internet”, in Proc. 2004
ACM SIGCOMM Internet Measurement Conference, 25-27
October 2004, pp. 219–232, Taormina, Italy.

[4] D. Veitch, “Synchronising Software Clocks on the In-
ternet”, in Winter Meeting of The North American Net-
work Operators’ Group (NANOG), 8-10 Feb 2004, Miami,
http://www.nanog.org/mtg-0402/delay.html.

[5] E. Corell, P. Saxholm, and D. Veitch, “A User Friendly
TSC Clock”, in Passive and Active Measurement Confer-
ence (PAM2006), March 30-31 2006, Adelaide Australia,
http://www.pamconf.org/2006/program.html.

[6] J. Ridoux and D. Veitch, “A Methodology for Clock
Benchmarking”, in Tridentcom, May 21-23 2007, Orlando,
Florida, USA. IEEE Computer Society.

[7] D. Veitch, J. Ridoux, and S. Babu, “Robust Synchronization
of Absolute and Difference Clocks over Networks”, Submit-
ted for publication, 2007.

[8] K. Correll, N. Barendt, and M. Branicky, “Design Consider-
ations for Software Only Implementations of the IEEE 1588
Precision Time Protocol”, in ISPCS, October 10-12 2005,
Zurich, Switzerland. IEEE Computer Society.

[9] “Endace Measurement Systems”, http://www.
endace.com/.

109

http://www.endace.com/
http://www.endace.com/

